Invariance of symplectic cohomology and twisted cotangent bundles over surfaces

We prove that symplectic cohomology for open convex symplectic manifolds is invariant when the symplectic form undergoes deformations which may be nonexact and noncompactly supported, provided one uses the correct local system of coefficients in Floer theory. As a sample application beyond the Liouv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Benedetti, Gabriele (VerfasserIn) , Ritter, Alexander (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 30 July 2020
In: International journal of mathematics
Year: 2020, Jahrgang: 31, Heft: 9, Pages: 1-48
ISSN:1793-6519
DOI:10.1142/S0129167X20500706
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1142/S0129167X20500706
Verlag, lizenzpflichtig, Volltext: https://www.worldscientific.com/doi/abs/10.1142/S0129167X20500706
Volltext
Verfasserangaben:Gabriele Benedetti, Alexander F. Ritter
Beschreibung
Zusammenfassung:We prove that symplectic cohomology for open convex symplectic manifolds is invariant when the symplectic form undergoes deformations which may be nonexact and noncompactly supported, provided one uses the correct local system of coefficients in Floer theory. As a sample application beyond the Liouville setup, we describe in detail the symplectic cohomology for disc bundles in the twisted cotangent bundle of surfaces, and we deduce existence results for periodic magnetic geodesics on surfaces. In particular, we show the existence of geometrically distinct orbits by exploiting properties of the BV-operator on symplectic cohomology.
Beschreibung:Gesehen am 15.10.2020
Beschreibung:Online Resource
ISSN:1793-6519
DOI:10.1142/S0129167X20500706