Hamiltonian delay equations: examples and a lower bound for the number of periodic solutions
We describe a variational approach to a notion of Hamiltonian delay equations. Our delay Hamiltonians are of product form. We consider several examples. For closed symplectically aspherical symplectic manifolds (M,ω) we prove that for generic delay Hamiltonians the number of 1-periodic solutions of...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
31 July 2020
|
| In: |
Advances in mathematics
Year: 2020, Jahrgang: 373 |
| ISSN: | 1090-2082 |
| DOI: | 10.1016/j.aim.2020.107319 |
| Online-Zugang: | Verlag, Volltext: https://doi.org/10.1016/j.aim.2020.107319 Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0001870820303455 |
| Verfasserangaben: | Peter Albers, Urs Frauenfelder, Felix Schlenk |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1736499041 | ||
| 003 | DE-627 | ||
| 005 | 20220819000724.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 201023s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.aim.2020.107319 |2 doi | |
| 035 | |a (DE-627)1736499041 | ||
| 035 | |a (DE-599)KXP1736499041 | ||
| 035 | |a (OCoLC)1341373264 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Albers, Peter |d 1975- |e VerfasserIn |0 (DE-588)129903817 |0 (DE-627)483350362 |0 (DE-576)188953140 |4 aut | |
| 245 | 1 | 0 | |a Hamiltonian delay equations |b examples and a lower bound for the number of periodic solutions |c Peter Albers, Urs Frauenfelder, Felix Schlenk |
| 264 | 1 | |c 31 July 2020 | |
| 300 | |a 17 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 17.02.2022 | ||
| 520 | |a We describe a variational approach to a notion of Hamiltonian delay equations. Our delay Hamiltonians are of product form. We consider several examples. For closed symplectically aspherical symplectic manifolds (M,ω) we prove that for generic delay Hamiltonians the number of 1-periodic solutions of the Hamiltonian delay equation is at least the sum of the Betti numbers of M, extending the proof of the Arnold conjecture to the case with delay. | ||
| 650 | 4 | |a Action functional | |
| 650 | 4 | |a Arnold conjecture | |
| 650 | 4 | |a Delay equation | |
| 650 | 4 | |a Hamiltonian system | |
| 650 | 4 | |a Periodic orbits | |
| 700 | 1 | |a Frauenfelder, Urs |e VerfasserIn |0 (DE-588)1161757171 |0 (DE-627)1025212304 |0 (DE-576)506854930 |4 aut | |
| 700 | 1 | |a Schlenk, Felix |e VerfasserIn |0 (DE-588)1176235281 |0 (DE-627)1047389142 |0 (DE-576)516594702 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Advances in mathematics |d Amsterdam [u.a.] : Elsevier, 1961 |g 373(2020) Artikel-Nummer 107319, 17 Seiten |h Online-Ressource |w (DE-627)268759200 |w (DE-600)1472893-X |w (DE-576)103373292 |x 1090-2082 |7 nnas |a Hamiltonian delay equations examples and a lower bound for the number of periodic solutions |
| 773 | 1 | 8 | |g volume:373 |g year:2020 |g extent:17 |a Hamiltonian delay equations examples and a lower bound for the number of periodic solutions |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.aim.2020.107319 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0001870820303455 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20201023 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 129903817 |a Albers, Peter |m 129903817:Albers, Peter |d 110000 |d 110100 |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PA129903817 |e 110100PA129903817 |e 110000PA129903817 |e 110400PA129903817 |e 700000PA129903817 |e 728500PA129903817 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN1736499041 |e 3785447523 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"origin":[{"dateIssuedDisp":"31 July 2020","dateIssuedKey":"2020"}],"id":{"doi":["10.1016/j.aim.2020.107319"],"eki":["1736499041"]},"name":{"displayForm":["Peter Albers, Urs Frauenfelder, Felix Schlenk"]},"physDesc":[{"extent":"17 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1961-","dateIssuedKey":"1961","publisher":"Elsevier ; Academic Press ; Academic Press ; Academic Press ; Acad. Press","publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.] ; Orlando, Fla. ; Brugge ; San Diego, Calif. [u.a.]"}],"id":{"zdb":["1472893-X"],"eki":["268759200"],"issn":["1090-2082"]},"disp":"Hamiltonian delay equations examples and a lower bound for the number of periodic solutionsAdvances in mathematics","note":["Gesehen am 14.09.2020"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"268759200","pubHistory":["1.1961/65(1965) - 231.2012; Vol. 232.2013 -"],"part":{"year":"2020","extent":"17","text":"373(2020) Artikel-Nummer 107319, 17 Seiten","volume":"373"},"title":[{"title":"Advances in mathematics","title_sort":"Advances in mathematics"}]}],"title":[{"title_sort":"Hamiltonian delay equations","title":"Hamiltonian delay equations","subtitle":"examples and a lower bound for the number of periodic solutions"}],"person":[{"family":"Albers","given":"Peter","display":"Albers, Peter","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Frauenfelder, Urs","given":"Urs","family":"Frauenfelder"},{"display":"Schlenk, Felix","roleDisplay":"VerfasserIn","role":"aut","family":"Schlenk","given":"Felix"}],"note":["Gesehen am 17.02.2022"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1736499041"} | ||
| SRT | |a ALBERSPETEHAMILTONIA3120 | ||