Hamiltonian delay equations: examples and a lower bound for the number of periodic solutions

We describe a variational approach to a notion of Hamiltonian delay equations. Our delay Hamiltonians are of product form. We consider several examples. For closed symplectically aspherical symplectic manifolds (M,ω) we prove that for generic delay Hamiltonians the number of 1-periodic solutions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Albers, Peter (VerfasserIn) , Frauenfelder, Urs (VerfasserIn) , Schlenk, Felix (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 31 July 2020
In: Advances in mathematics
Year: 2020, Jahrgang: 373
ISSN:1090-2082
DOI:10.1016/j.aim.2020.107319
Online-Zugang:Verlag, Volltext: https://doi.org/10.1016/j.aim.2020.107319
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0001870820303455
Volltext
Verfasserangaben:Peter Albers, Urs Frauenfelder, Felix Schlenk

MARC

LEADER 00000caa a2200000 c 4500
001 1736499041
003 DE-627
005 20220819000724.0
007 cr uuu---uuuuu
008 201023s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.aim.2020.107319  |2 doi 
035 |a (DE-627)1736499041 
035 |a (DE-599)KXP1736499041 
035 |a (OCoLC)1341373264 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Albers, Peter  |d 1975-  |e VerfasserIn  |0 (DE-588)129903817  |0 (DE-627)483350362  |0 (DE-576)188953140  |4 aut 
245 1 0 |a Hamiltonian delay equations  |b examples and a lower bound for the number of periodic solutions  |c Peter Albers, Urs Frauenfelder, Felix Schlenk 
264 1 |c 31 July 2020 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 17.02.2022 
520 |a We describe a variational approach to a notion of Hamiltonian delay equations. Our delay Hamiltonians are of product form. We consider several examples. For closed symplectically aspherical symplectic manifolds (M,ω) we prove that for generic delay Hamiltonians the number of 1-periodic solutions of the Hamiltonian delay equation is at least the sum of the Betti numbers of M, extending the proof of the Arnold conjecture to the case with delay. 
650 4 |a Action functional 
650 4 |a Arnold conjecture 
650 4 |a Delay equation 
650 4 |a Hamiltonian system 
650 4 |a Periodic orbits 
700 1 |a Frauenfelder, Urs  |e VerfasserIn  |0 (DE-588)1161757171  |0 (DE-627)1025212304  |0 (DE-576)506854930  |4 aut 
700 1 |a Schlenk, Felix  |e VerfasserIn  |0 (DE-588)1176235281  |0 (DE-627)1047389142  |0 (DE-576)516594702  |4 aut 
773 0 8 |i Enthalten in  |t Advances in mathematics  |d Amsterdam [u.a.] : Elsevier, 1961  |g 373(2020) Artikel-Nummer 107319, 17 Seiten  |h Online-Ressource  |w (DE-627)268759200  |w (DE-600)1472893-X  |w (DE-576)103373292  |x 1090-2082  |7 nnas  |a Hamiltonian delay equations examples and a lower bound for the number of periodic solutions 
773 1 8 |g volume:373  |g year:2020  |g extent:17  |a Hamiltonian delay equations examples and a lower bound for the number of periodic solutions 
856 4 0 |u https://doi.org/10.1016/j.aim.2020.107319  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0001870820303455  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20201023 
993 |a Article 
994 |a 2020 
998 |g 129903817  |a Albers, Peter  |m 129903817:Albers, Peter  |d 110000  |d 110100  |d 110000  |d 110400  |d 700000  |d 728500  |e 110000PA129903817  |e 110100PA129903817  |e 110000PA129903817  |e 110400PA129903817  |e 700000PA129903817  |e 728500PA129903817  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1736499041  |e 3785447523 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedDisp":"31 July 2020","dateIssuedKey":"2020"}],"id":{"doi":["10.1016/j.aim.2020.107319"],"eki":["1736499041"]},"name":{"displayForm":["Peter Albers, Urs Frauenfelder, Felix Schlenk"]},"physDesc":[{"extent":"17 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1961-","dateIssuedKey":"1961","publisher":"Elsevier ; Academic Press ; Academic Press ; Academic Press ; Acad. Press","publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.] ; Orlando, Fla. ; Brugge ; San Diego, Calif. [u.a.]"}],"id":{"zdb":["1472893-X"],"eki":["268759200"],"issn":["1090-2082"]},"disp":"Hamiltonian delay equations examples and a lower bound for the number of periodic solutionsAdvances in mathematics","note":["Gesehen am 14.09.2020"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"268759200","pubHistory":["1.1961/65(1965) - 231.2012; Vol. 232.2013 -"],"part":{"year":"2020","extent":"17","text":"373(2020) Artikel-Nummer 107319, 17 Seiten","volume":"373"},"title":[{"title":"Advances in mathematics","title_sort":"Advances in mathematics"}]}],"title":[{"title_sort":"Hamiltonian delay equations","title":"Hamiltonian delay equations","subtitle":"examples and a lower bound for the number of periodic solutions"}],"person":[{"family":"Albers","given":"Peter","display":"Albers, Peter","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Frauenfelder, Urs","given":"Urs","family":"Frauenfelder"},{"display":"Schlenk, Felix","roleDisplay":"VerfasserIn","role":"aut","family":"Schlenk","given":"Felix"}],"note":["Gesehen am 17.02.2022"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1736499041"} 
SRT |a ALBERSPETEHAMILTONIA3120