Melanoma recognition by a deep learning convolutional neural network: performance in different melanoma subtypes and localisations

Background: Deep learning convolutional neural networks (CNNs) show great potential for melanoma diagnosis. Melanoma thickness at diagnosis among others depends on melanoma localisation and subtype (e.g. advanced thickness in acrolentiginous or nodular melanomas). The question whether CNN may counte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Winkler, Julia K. (VerfasserIn) , Kommoss, Katharina (VerfasserIn) , Müller-Christmann, Christine (VerfasserIn) , Toberer, Ferdinand (VerfasserIn) , Enk, Alexander (VerfasserIn) , Deinlein, Teresa (VerfasserIn) , Hofmann-Wellenhof, Rainer (VerfasserIn) , Thomas, Luc (VerfasserIn) , Lallas, Aimilios (VerfasserIn) , Blum, Andreas (VerfasserIn) , Stolz, Wilhelm (VerfasserIn) , Abassi, Mohamed S. (VerfasserIn) , Fuchs, Tobias (VerfasserIn) , Rosenberger, Albert (VerfasserIn) , Hänßle, Holger (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 January 2020
In: European journal of cancer
Year: 2020, Jahrgang: 127, Pages: 21-29
ISSN:1879-0852
DOI:10.1016/j.ejca.2019.11.020
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://dx.doi.org/10.1016/j.ejca.2019.11.020
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0959804919308640
Volltext
Verfasserangaben:Julia K. Winkler, Katharina Sies, Christine Fink, Ferdinand Toberer, Alexander Enk, Teresa Deinlein, Rainer Hofmann-Wellenhof, Luc Thomas, Aimilios Lallas, Andreas Blum, Wilhelm Stolz, Mohamed S. Abassi, Tobias Fuchs, Albert Rosenberger, Holger A. Haenssle

MARC

LEADER 00000caa a2200000 4500
001 1736690108
003 DE-627
005 20240407193409.0
007 cr uuu---uuuuu
008 201027s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ejca.2019.11.020  |2 doi 
035 |a (DE-627)1736690108 
035 |a (DE-599)KXP1736690108 
035 |a (OCoLC)1341374879 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Winkler, Julia K.  |d 1987-  |e VerfasserIn  |0 (DE-588)1038218993  |0 (DE-627)756780721  |0 (DE-576)392196514  |4 aut 
245 1 0 |a Melanoma recognition by a deep learning convolutional neural network  |b performance in different melanoma subtypes and localisations  |c Julia K. Winkler, Katharina Sies, Christine Fink, Ferdinand Toberer, Alexander Enk, Teresa Deinlein, Rainer Hofmann-Wellenhof, Luc Thomas, Aimilios Lallas, Andreas Blum, Wilhelm Stolz, Mohamed S. Abassi, Tobias Fuchs, Albert Rosenberger, Holger A. Haenssle 
264 1 |c 20 January 2020 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.10.2020 
520 |a Background: Deep learning convolutional neural networks (CNNs) show great potential for melanoma diagnosis. Melanoma thickness at diagnosis among others depends on melanoma localisation and subtype (e.g. advanced thickness in acrolentiginous or nodular melanomas). The question whether CNN may counterbalance physicians’ diagnostic difficulties in these melanomas has not been addressed. We aimed to investigate the diagnostic performance of a CNN with approval for the European market across different melanoma localisations and subtypes. Methods: The current market version of a CNN (Moleanalyzer-Pro®, FotoFinder Systems GmbH, Bad Birnbach, Germany) was used for classifications (malignant/benign) in six dermoscopic image sets. Each set included 30 melanomas and 100 benign lesions of related localisations and morphology (set-SSM: superficial spreading melanomas and macular nevi; set-LMM: lentigo maligna melanomas and facial solar lentigines/seborrhoeic keratoses/nevi; set-NM: nodular melanomas and papillomatous/dermal/blue nevi; set-Mucosa: mucosal melanomas and mucosal melanoses/macules/nevi; set-AMskin: acrolentiginous melanomas and acral (congenital) nevi; set-AMnail: subungual melanomas and subungual (congenital) nevi/lentigines/ethnical type pigmentations). Results: The CNN showed a high-level performance in set-SSM, set-NM and set-LMM (sensitivities >93.3%, specificities >65%, receiver operating characteristics-area under the curve [ROC-AUC] >0.926). In set-AMskin, the sensitivity was lower (83.3%) at a high specificity (91.0%) and ROC-AUC (0.928). A limited performance was found in set-mucosa (sensitivity 93.3%, specificity 38.0%, ROC-AUC 0.754) and set-AMnail (sensitivity 53.3%, specificity 68.0%, ROC-AUC 0.621). Conclusions: The CNN may help to partly counterbalance reduced human accuracies. However, physicians need to be aware of the CNN's limited diagnostic performance in mucosal and subungual lesions. Improvements may be expected from additional training images of mucosal and subungual sites. 
650 4 |a Convolutional neural network 
650 4 |a Deep learning 
650 4 |a Dermoscopy 
650 4 |a Melanoma 
650 4 |a Nevi 
700 1 |a Kommoss, Katharina  |e VerfasserIn  |0 (DE-588)1216661227  |0 (DE-627)1727913124  |4 aut 
700 1 |a Müller-Christmann, Christine  |d 1983-  |e VerfasserIn  |0 (DE-588)143738127  |0 (DE-627)654330387  |0 (DE-576)338647651  |4 aut 
700 1 |a Toberer, Ferdinand  |d 1981-  |e VerfasserIn  |0 (DE-588)102155832X  |0 (DE-627)715821962  |0 (DE-576)362852367  |4 aut 
700 1 |a Enk, Alexander  |d 1963-  |e VerfasserIn  |0 (DE-588)1032757140  |0 (DE-627)739272535  |0 (DE-576)166173517  |4 aut 
700 1 |a Deinlein, Teresa  |e VerfasserIn  |4 aut 
700 1 |a Hofmann-Wellenhof, Rainer  |e VerfasserIn  |4 aut 
700 1 |a Thomas, Luc  |e VerfasserIn  |4 aut 
700 1 |a Lallas, Aimilios  |e VerfasserIn  |4 aut 
700 1 |a Blum, Andreas  |e VerfasserIn  |4 aut 
700 1 |a Stolz, Wilhelm  |e VerfasserIn  |4 aut 
700 1 |a Abassi, Mohamed S.  |e VerfasserIn  |4 aut 
700 1 |a Fuchs, Tobias  |e VerfasserIn  |4 aut 
700 1 |a Rosenberger, Albert  |e VerfasserIn  |0 (DE-588)1183432909  |0 (DE-627)1663204772  |4 aut 
700 1 |a Hänßle, Holger  |e VerfasserIn  |0 (DE-588)1074971531  |0 (DE-627)832791733  |0 (DE-576)443174598  |4 aut 
773 0 8 |i Enthalten in  |t European journal of cancer  |d Amsterdam [u.a.] : Elsevier, 1992  |g 127(2020), Seite 21-29  |w (DE-627)266883400  |w (DE-600)1468190-0  |w (DE-576)090954173  |x 1879-0852  |7 nnns  |a Melanoma recognition by a deep learning convolutional neural network performance in different melanoma subtypes and localisations 
773 1 8 |g volume:127  |g year:2020  |g pages:21-29  |g extent:9  |a Melanoma recognition by a deep learning convolutional neural network performance in different melanoma subtypes and localisations 
856 4 0 |u https://dx.doi.org/10.1016/j.ejca.2019.11.020  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0959804919308640  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20201027 
993 |a Article 
994 |a 2020 
998 |g 1074971531  |a Hänßle, Holger  |m 1074971531:Hänßle, Holger  |d 910000  |d 911300  |e 910000PH1074971531  |e 911300PH1074971531  |k 0/910000/  |k 1/910000/911300/  |p 15  |y j 
998 |g 1032757140  |a Enk, Alexander  |m 1032757140:Enk, Alexander  |d 910000  |d 911300  |e 910000PE1032757140  |e 911300PE1032757140  |k 0/910000/  |k 1/910000/911300/  |p 5 
998 |g 102155832X  |a Toberer, Ferdinand  |m 102155832X:Toberer, Ferdinand  |d 910000  |d 911300  |e 910000PT102155832X  |e 911300PT102155832X  |k 0/910000/  |k 1/910000/911300/  |p 4 
998 |g 143738127  |a Müller-Christmann, Christine  |m 143738127:Müller-Christmann, Christine  |d 910000  |d 911300  |e 910000PM143738127  |e 911300PM143738127  |k 0/910000/  |k 1/910000/911300/  |p 3 
998 |g 1216661227  |a Kommoss, Katharina  |m 1216661227:Kommoss, Katharina  |d 910000  |d 911300  |e 910000PK1216661227  |e 911300PK1216661227  |k 0/910000/  |k 1/910000/911300/  |p 2 
998 |g 1038218993  |a Winkler, Julia K.  |m 1038218993:Winkler, Julia K.  |d 910000  |d 911300  |e 910000PW1038218993  |e 911300PW1038218993  |k 0/910000/  |k 1/910000/911300/  |p 1  |x j 
999 |a KXP-PPN1736690108  |e 378677918X 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"20 January 2020"}],"title":[{"title":"Melanoma recognition by a deep learning convolutional neural network","title_sort":"Melanoma recognition by a deep learning convolutional neural network","subtitle":"performance in different melanoma subtypes and localisations"}],"note":["Gesehen am 27.10.2020"],"name":{"displayForm":["Julia K. Winkler, Katharina Sies, Christine Fink, Ferdinand Toberer, Alexander Enk, Teresa Deinlein, Rainer Hofmann-Wellenhof, Luc Thomas, Aimilios Lallas, Andreas Blum, Wilhelm Stolz, Mohamed S. Abassi, Tobias Fuchs, Albert Rosenberger, Holger A. Haenssle"]},"physDesc":[{"extent":"S.9"}],"person":[{"roleDisplay":"VerfasserIn","given":"Julia K.","family":"Winkler","display":"Winkler, Julia K.","role":"aut"},{"roleDisplay":"VerfasserIn","given":"Katharina","family":"Kommoss","role":"aut","display":"Kommoss, Katharina"},{"roleDisplay":"VerfasserIn","given":"Christine","family":"Müller-Christmann","role":"aut","display":"Müller-Christmann, Christine"},{"given":"Ferdinand","roleDisplay":"VerfasserIn","display":"Toberer, Ferdinand","role":"aut","family":"Toberer"},{"roleDisplay":"VerfasserIn","given":"Alexander","family":"Enk","role":"aut","display":"Enk, Alexander"},{"family":"Deinlein","role":"aut","display":"Deinlein, Teresa","roleDisplay":"VerfasserIn","given":"Teresa"},{"display":"Hofmann-Wellenhof, Rainer","role":"aut","family":"Hofmann-Wellenhof","given":"Rainer","roleDisplay":"VerfasserIn"},{"family":"Thomas","display":"Thomas, Luc","role":"aut","roleDisplay":"VerfasserIn","given":"Luc"},{"roleDisplay":"VerfasserIn","given":"Aimilios","family":"Lallas","role":"aut","display":"Lallas, Aimilios"},{"display":"Blum, Andreas","role":"aut","family":"Blum","given":"Andreas","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Stolz, Wilhelm","family":"Stolz","given":"Wilhelm","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Abassi, Mohamed S.","family":"Abassi","given":"Mohamed S.","roleDisplay":"VerfasserIn"},{"given":"Tobias","roleDisplay":"VerfasserIn","role":"aut","display":"Fuchs, Tobias","family":"Fuchs"},{"given":"Albert","roleDisplay":"VerfasserIn","role":"aut","display":"Rosenberger, Albert","family":"Rosenberger"},{"given":"Holger","roleDisplay":"VerfasserIn","display":"Hänßle, Holger","role":"aut","family":"Hänßle"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"relHost":[{"id":{"zdb":["1468190-0"],"eki":["266883400"],"issn":["1879-0852"]},"recId":"266883400","corporate":[{"display":"European Organization for Research on Treatment of Cancer","role":"isb","roleDisplay":"Herausgebendes Organ"},{"roleDisplay":"Herausgebendes Organ","role":"isb","display":"European Association for Cancer Research"},{"roleDisplay":"Herausgebendes Organ","role":"isb","display":"European School of Oncology"}],"title":[{"title":"European journal of cancer","title_sort":"European journal of cancer"}],"titleAlt":[{"title":"EJC online"}],"note":["Gesehen am 21.03.24","Ungezählte Beil.: Supplement"],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"pages":"21-29","volume":"127","year":"2020","extent":"9","text":"127(2020), Seite 21-29"},"origin":[{"publisherPlace":"Amsterdam [u.a.] ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1992","dateIssuedDisp":"1992-","publisher":"Elsevier ; Pergamon Press"}],"pubHistory":["28.1992 -"],"language":["eng"],"disp":"Melanoma recognition by a deep learning convolutional neural network performance in different melanoma subtypes and localisationsEuropean journal of cancer"}],"id":{"doi":["10.1016/j.ejca.2019.11.020"],"eki":["1736690108"]},"recId":"1736690108"} 
SRT |a WINKLERJULMELANOMARE2020