Effects of label noise on deep learning-based skin cancer classification

Recent studies have shown that deep learning is capable of classifying dermatoscopic images at least as well as dermatologists. However, many studies in skin cancer classification utilize non-biopsy-verified training images. This imperfect ground truth introduces a systematic error, but the effects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hekler, Achim (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn) , Krieghoff-Henning, Eva (VerfasserIn) , Utikal, Jochen (VerfasserIn) , Meier, Friedegund (VerfasserIn) , Gellrich, Frank Friedrich (VerfasserIn) , Upmeier zu Belzen, Julius (VerfasserIn) , French, Lars E. (VerfasserIn) , Schlager, Justin Gabriel (VerfasserIn) , Ghoreschi, Kamran (VerfasserIn) , Wilhelm, Tabea (VerfasserIn) , Kutzner, Heinz (VerfasserIn) , Berking, Carola (VerfasserIn) , Heppt, Markus V. (VerfasserIn) , Haferkamp, Sebastian (VerfasserIn) , Sondermann, Wiebke (VerfasserIn) , Schadendorf, Dirk (VerfasserIn) , Schilling, Bastian (VerfasserIn) , Izar, Benjamin (VerfasserIn) , Maron, Roman C. (VerfasserIn) , Schmitt, Max (VerfasserIn) , Fröhling, Stefan (VerfasserIn) , Lipka, Daniel (VerfasserIn) , Brinker, Titus Josef (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 06 May 2020
In: Frontiers in medicine
Year: 2020, Jahrgang: 7, Pages: 1-7
ISSN:2296-858X
DOI:10.3389/fmed.2020.00177
Online-Zugang:Resolving-System, kostenfrei: http://dx.doi.org/10.3389/fmed.2020.00177
Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3389/fmed.2020.00177
Verlag, lizenzpflichtig, Volltext: https://www.frontiersin.org/articles/10.3389/fmed.2020.00177/full
Volltext
Verfasserangaben:Achim Hekler, Jakob N. Kather, Eva Krieghoff-Henning, Jochen S. Utikal, Friedegund Meier, Frank F. Gellrich, Julius Upmeier zu Belzen, Lars French, Justin G. Schlager, Kamran Ghoreschi, Tabea Wilhelm, Heinz Kutzner, Carola Berking, Markus V. Heppt, Sebastian Haferkamp, Wiebke Sondermann, Dirk Schadendorf, Bastian Schilling, Benjamin Izar, Roman Maron, Max Schmitt, Stefan Fröhling, Daniel B. Lipka and Titus J. Brinker

MARC

LEADER 00000caa a2200000 c 4500
001 1738651126
003 DE-627
005 20251021115850.0
007 cr uuu---uuuuu
008 201113s2020 xx |||||o 00| ||eng c
024 7 |a 10.3389/fmed.2020.00177  |2 doi 
035 |a (DE-627)1738651126 
035 |a (DE-599)KXP1738651126 
035 |a (OCoLC)1341376548 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Hekler, Achim  |e VerfasserIn  |0 (DE-588)1196829314  |0 (DE-627)1678721344  |4 aut 
245 1 0 |a Effects of label noise on deep learning-based skin cancer classification  |c Achim Hekler, Jakob N. Kather, Eva Krieghoff-Henning, Jochen S. Utikal, Friedegund Meier, Frank F. Gellrich, Julius Upmeier zu Belzen, Lars French, Justin G. Schlager, Kamran Ghoreschi, Tabea Wilhelm, Heinz Kutzner, Carola Berking, Markus V. Heppt, Sebastian Haferkamp, Wiebke Sondermann, Dirk Schadendorf, Bastian Schilling, Benjamin Izar, Roman Maron, Max Schmitt, Stefan Fröhling, Daniel B. Lipka and Titus J. Brinker 
264 1 |c 06 May 2020 
300 |a 7 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Recent studies have shown that deep learning is capable of classifying dermatoscopic images at least as well as dermatologists. However, many studies in skin cancer classification utilize non-biopsy-verified training images. This imperfect ground truth introduces a systematic error, but the effects on classifier performance are currently unknown. Here, we systematically examine the effects of label noise by training and evaluating convolutional neural networks (CNN) with 804 images of melanoma and nevi labeled either by dermatologists or by biopsy. The CNNs are evaluated on a test set of 384 images by means of 4-fold cross validation comparing the outputs with either the corresponding dermatological or the biopsy-verified diagnosis. With identical ground truths of training and test labels, high accuracies with 75.03% (95% CI: 74.39-75.66%) for dermatological and 73.80% (95% CI: 73.10-74.51%) for biopsy-verified labels can be achieved. However, if the CNN is trained and tested with different ground truths, accuracy drops significantly to 64.53% (95% CI: 63.12-65.94%, p<0.01) on a non-biopsy-verified and to 64.24% (95% CI: 62.66-65.83%, p<0.01) on a biopsy-verified test set. In conclusion, deep learning methods for skin cancer classification are highly sensitive to label noise and future work should use biopsy-verified training images to mitigate this problem. 
650 4 |a artificial intelligence 
650 4 |a Dermatology 
650 4 |a Label noise 
650 4 |a machine learning 
650 4 |a Melanoma 
650 4 |a Skin Cancer 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
700 1 |a Krieghoff-Henning, Eva  |d 1976-  |e VerfasserIn  |0 (DE-588)132407914  |0 (DE-627)52267786X  |0 (DE-576)299126706  |4 aut 
700 1 |a Utikal, Jochen  |d 1974-  |e VerfasserIn  |0 (DE-588)1026463750  |0 (DE-627)726765015  |0 (DE-576)371816580  |4 aut 
700 1 |a Meier, Friedegund  |d 1960-  |e VerfasserIn  |0 (DE-588)124970184  |0 (DE-627)369238672  |0 (DE-576)294594825  |4 aut 
700 1 |a Gellrich, Frank Friedrich  |d 1990-  |e VerfasserIn  |0 (DE-588)123548162X  |0 (DE-627)1760486523  |4 aut 
700 1 |a Upmeier zu Belzen, Julius  |e VerfasserIn  |4 aut 
700 1 |a French, Lars E.  |d 1963-  |e VerfasserIn  |0 (DE-588)141166835  |0 (DE-627)70389966X  |0 (DE-576)322518792  |4 aut 
700 1 |a Schlager, Justin Gabriel  |d 1987-  |e VerfasserIn  |0 (DE-588)1119171520  |0 (DE-627)872683915  |0 (DE-576)479749930  |4 aut 
700 1 |a Ghoreschi, Kamran  |d 1970-  |e VerfasserIn  |0 (DE-588)124466079  |0 (DE-627)363367357  |0 (DE-576)294184988  |4 aut 
700 1 |a Wilhelm, Tabea  |e VerfasserIn  |4 aut 
700 1 |a Kutzner, Heinz  |e VerfasserIn  |0 (DE-588)1207300756  |0 (DE-627)1693511363  |4 aut 
700 1 |a Berking, Carola  |d 1971-  |e VerfasserIn  |0 (DE-588)115659714  |0 (DE-627)077390121  |0 (DE-576)290004942  |4 aut 
700 1 |a Heppt, Markus V.  |d 1987-  |e VerfasserIn  |0 (DE-588)1072242346  |0 (DE-627)827081111  |0 (DE-576)43371767X  |4 aut 
700 1 |a Haferkamp, Sebastian  |d 1978-  |e VerfasserIn  |0 (DE-588)132018330  |0 (DE-627)51684296X  |0 (DE-576)298896044  |4 aut 
700 1 |a Sondermann, Wiebke  |e VerfasserIn  |0 (DE-588)1198953756  |0 (DE-627)1681162121  |4 aut 
700 1 |a Schadendorf, Dirk  |d 1960-  |e VerfasserIn  |0 (DE-588)11142576X  |0 (DE-627)499566076  |0 (DE-576)289702275  |4 aut 
700 1 |a Schilling, Bastian  |d 1979-  |e VerfasserIn  |0 (DE-588)142513563  |0 (DE-627)704247887  |0 (DE-576)331358913  |4 aut 
700 1 |a Izar, Benjamin  |e VerfasserIn  |4 aut 
700 1 |a Maron, Roman C.  |e VerfasserIn  |0 (DE-588)1198959851  |0 (DE-627)1681173867  |4 aut 
700 1 |a Schmitt, Max  |e VerfasserIn  |0 (DE-588)1236577469  |0 (DE-627)1761961586  |4 aut 
700 1 |a Fröhling, Stefan  |d 1969-  |e VerfasserIn  |0 (DE-588)120890046  |0 (DE-627)080950302  |0 (DE-576)188733930  |4 aut 
700 1 |a Lipka, Daniel  |d 1976-  |e VerfasserIn  |0 (DE-588)131915312  |0 (DE-627)516076426  |0 (DE-576)298833328  |4 aut 
700 1 |a Brinker, Titus Josef  |d 1990-  |e VerfasserIn  |0 (DE-588)1156309395  |0 (DE-627)1018860487  |0 (DE-576)502097434  |4 aut 
773 0 8 |i Enthalten in  |t Frontiers in medicine  |d Lausanne : Frontiers Media, 2014  |g 7(2020), Artikel-ID 177, Seite 1-7  |h Online-Ressource  |w (DE-627)789482991  |w (DE-600)2775999-4  |w (DE-576)408729597  |x 2296-858X  |7 nnas  |a Effects of label noise on deep learning-based skin cancer classification 
773 1 8 |g volume:7  |g year:2020  |g elocationid:177  |g pages:1-7  |g extent:7  |a Effects of label noise on deep learning-based skin cancer classification 
856 4 0 |u http://dx.doi.org/10.3389/fmed.2020.00177  |x Resolving-System  |z kostenfrei 
856 4 0 |u https://doi.org/10.3389/fmed.2020.00177  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.frontiersin.org/articles/10.3389/fmed.2020.00177/full  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210412 
993 |a Article 
994 |a 2020 
998 |g 1156309395  |a Brinker, Titus Josef  |m 1156309395:Brinker, Titus Josef  |d 910000  |d 911300  |e 910000PB1156309395  |e 911300PB1156309395  |k 0/910000/  |k 1/910000/911300/  |p 24  |y j 
998 |g 131915312  |a Lipka, Daniel  |m 131915312:Lipka, Daniel  |d 140000  |e 140000PL131915312  |k 0/140000/  |p 23 
998 |g 120890046  |a Fröhling, Stefan  |m 120890046:Fröhling, Stefan  |d 50000  |e 50000PF120890046  |k 0/50000/  |p 22 
998 |g 11142576X  |a Schadendorf, Dirk  |m 11142576X:Schadendorf, Dirk  |d 50000  |e 50000PS11142576X  |k 0/50000/  |p 17 
998 |g 1026463750  |a Utikal, Jochen  |m 1026463750:Utikal, Jochen  |d 60000  |e 60000PU1026463750  |k 0/60000/  |p 4 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 2 
999 |a KXP-PPN1738651126  |e 3906073661 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"7 S."}],"recId":"1738651126","type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"id":{"eki":["1738651126"],"doi":["10.3389/fmed.2020.00177"]},"title":[{"title_sort":"Effects of label noise on deep learning-based skin cancer classification","title":"Effects of label noise on deep learning-based skin cancer classification"}],"name":{"displayForm":["Achim Hekler, Jakob N. Kather, Eva Krieghoff-Henning, Jochen S. Utikal, Friedegund Meier, Frank F. Gellrich, Julius Upmeier zu Belzen, Lars French, Justin G. Schlager, Kamran Ghoreschi, Tabea Wilhelm, Heinz Kutzner, Carola Berking, Markus V. Heppt, Sebastian Haferkamp, Wiebke Sondermann, Dirk Schadendorf, Bastian Schilling, Benjamin Izar, Roman Maron, Max Schmitt, Stefan Fröhling, Daniel B. Lipka and Titus J. Brinker"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"06 May 2020"}],"person":[{"family":"Hekler","role":"aut","given":"Achim","display":"Hekler, Achim"},{"display":"Kather, Jakob Nikolas","family":"Kather","given":"Jakob Nikolas","role":"aut"},{"given":"Eva","role":"aut","family":"Krieghoff-Henning","display":"Krieghoff-Henning, Eva"},{"role":"aut","given":"Jochen","family":"Utikal","display":"Utikal, Jochen"},{"display":"Meier, Friedegund","family":"Meier","given":"Friedegund","role":"aut"},{"given":"Frank Friedrich","role":"aut","family":"Gellrich","display":"Gellrich, Frank Friedrich"},{"family":"Upmeier zu Belzen","given":"Julius","role":"aut","display":"Upmeier zu Belzen, Julius"},{"family":"French","role":"aut","given":"Lars E.","display":"French, Lars E."},{"display":"Schlager, Justin Gabriel","family":"Schlager","role":"aut","given":"Justin Gabriel"},{"display":"Ghoreschi, Kamran","role":"aut","given":"Kamran","family":"Ghoreschi"},{"display":"Wilhelm, Tabea","family":"Wilhelm","given":"Tabea","role":"aut"},{"family":"Kutzner","role":"aut","given":"Heinz","display":"Kutzner, Heinz"},{"display":"Berking, Carola","given":"Carola","role":"aut","family":"Berking"},{"family":"Heppt","role":"aut","given":"Markus V.","display":"Heppt, Markus V."},{"display":"Haferkamp, Sebastian","family":"Haferkamp","given":"Sebastian","role":"aut"},{"family":"Sondermann","given":"Wiebke","role":"aut","display":"Sondermann, Wiebke"},{"family":"Schadendorf","given":"Dirk","role":"aut","display":"Schadendorf, Dirk"},{"display":"Schilling, Bastian","given":"Bastian","role":"aut","family":"Schilling"},{"display":"Izar, Benjamin","role":"aut","given":"Benjamin","family":"Izar"},{"family":"Maron","given":"Roman C.","role":"aut","display":"Maron, Roman C."},{"display":"Schmitt, Max","family":"Schmitt","role":"aut","given":"Max"},{"given":"Stefan","role":"aut","family":"Fröhling","display":"Fröhling, Stefan"},{"display":"Lipka, Daniel","family":"Lipka","role":"aut","given":"Daniel"},{"role":"aut","given":"Titus Josef","family":"Brinker","display":"Brinker, Titus Josef"}],"relHost":[{"titleAlt":[{"title":"FMED"},{"title":"Front. Med."}],"pubHistory":["2014 -"],"id":{"issn":["2296-858X"],"eki":["789482991"],"zdb":["2775999-4"]},"part":{"pages":"1-7","year":"2020","text":"7(2020), Artikel-ID 177, Seite 1-7","volume":"7","extent":"7"},"origin":[{"publisher":"Frontiers Media","dateIssuedKey":"2014","publisherPlace":"Lausanne","dateIssuedDisp":"2014-"}],"title":[{"title":"Frontiers in medicine","title_sort":"Frontiers in medicine"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"note":["Gesehen am 09.02.2021"],"recId":"789482991","physDesc":[{"extent":"Online-Ressource"}],"disp":"Effects of label noise on deep learning-based skin cancer classificationFrontiers in medicine"}]} 
SRT |a HEKLERACHIEFFECTSOFL0620