A rainbow blow-up lemma for almost optimally bounded edge-colourings
A subgraph of an edge-coloured graph is called rainbow if all its edges have different colours. We prove a rainbow version of the blow-up lemma of Komlós, Sárközy, and Szemerédi that applies to almost optimally bounded colourings. A corollary of this is that there exists a rainbow copy of any bo...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
30 October 2020
|
| In: |
Forum of mathematics. Sigma
Year: 2020, Jahrgang: 8, Pages: 1-32 |
| ISSN: | 2050-5094 |
| DOI: | 10.1017/fms.2020.38 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1017/fms.2020.38 Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/forum-of-mathematics-sigma/article/rainbow-blowup-lemma-for-almost-optimally-bounded-edgecolourings/9C0AE7E446B2C742A920DB164A04412F |
| Verfasserangaben: | Stefan Ehard, Stefan Glock and Felix Joos |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1740776038 | ||
| 003 | DE-627 | ||
| 005 | 20241212131815.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 201124s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1017/fms.2020.38 |2 doi | |
| 035 | |a (DE-627)1740776038 | ||
| 035 | |a (DE-599)KXP1740776038 | ||
| 035 | |a (OCoLC)1341378085 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Ehard, Stefan |e VerfasserIn |0 (DE-588)1193601223 |0 (DE-627)1672338697 |4 aut | |
| 245 | 1 | 2 | |a A rainbow blow-up lemma for almost optimally bounded edge-colourings |c Stefan Ehard, Stefan Glock and Felix Joos |
| 264 | 1 | |c 30 October 2020 | |
| 300 | |a 32 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 24.11.2020 | ||
| 520 | |a A subgraph of an edge-coloured graph is called rainbow if all its edges have different colours. We prove a rainbow version of the blow-up lemma of Komlós, Sárközy, and Szemerédi that applies to almost optimally bounded colourings. A corollary of this is that there exists a rainbow copy of any bounded-degree spanning subgraph H in a quasirandom host graph G, assuming that the edge-colouring of G fulfills a boundedness condition that is asymptotically best possible. This has many applications beyond rainbow colourings: for example, to graph decompositions, orthogonal double covers, and graph labellings. | ||
| 650 | 4 | |a 05B40 | |
| 650 | 4 | |a 05C15 | |
| 650 | 4 | |a 05C35 | |
| 650 | 4 | |a 05C51 | |
| 650 | 4 | |a 05C60 | |
| 650 | 4 | |a 05C70 | |
| 650 | 4 | |a 05C78 | |
| 650 | 4 | |a blow-up lemma | |
| 650 | 4 | |a rainbow colourings | |
| 700 | 1 | |a Glock, Stefan |e VerfasserIn |0 (DE-588)1058404121 |0 (DE-627)796847827 |0 (DE-576)414583949 |4 aut | |
| 700 | 1 | |a Joos, Felix |d 1989- |e VerfasserIn |0 (DE-588)1075006171 |0 (DE-627)832846244 |0 (DE-576)442747438 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Forum of mathematics. Sigma |d Cambridge : Cambridge Univ. Press, 2013 |g 8(2020), Artikel-ID e37, Seite 1-32 |h Online-Ressource |w (DE-627)751861081 |w (DE-600)2723154-9 |w (DE-576)390372471 |x 2050-5094 |7 nnas |a A rainbow blow-up lemma for almost optimally bounded edge-colourings |
| 773 | 1 | 8 | |g volume:8 |g year:2020 |g elocationid:e37 |g pages:1-32 |g extent:32 |a A rainbow blow-up lemma for almost optimally bounded edge-colourings |
| 856 | 4 | 0 | |u https://doi.org/10.1017/fms.2020.38 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.cambridge.org/core/journals/forum-of-mathematics-sigma/article/rainbow-blowup-lemma-for-almost-optimally-bounded-edgecolourings/9C0AE7E446B2C742A920DB164A04412F |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20201124 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1075006171 |a Joos, Felix |m 1075006171:Joos, Felix |d 110000 |d 110300 |e 110000PJ1075006171 |e 110300PJ1075006171 |k 0/110000/ |k 1/110000/110300/ |p 3 |y j | ||
| 999 | |a KXP-PPN1740776038 |e 3811634550 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"origin":[{"dateIssuedDisp":"30 October 2020","dateIssuedKey":"2020"}],"id":{"eki":["1740776038"],"doi":["10.1017/fms.2020.38"]},"name":{"displayForm":["Stefan Ehard, Stefan Glock and Felix Joos"]},"physDesc":[{"extent":"32 S."}],"relHost":[{"id":{"issn":["2050-5094"],"eki":["751861081"],"zdb":["2723154-9"]},"origin":[{"publisherPlace":"Cambridge","dateIssuedDisp":"2013-","dateIssuedKey":"2013","publisher":"Cambridge Univ. Press"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"partname":"Sigma","title_sort":"Forum of mathematics","title":"Forum of mathematics"}],"language":["eng"],"recId":"751861081","type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"A rainbow blow-up lemma for almost optimally bounded edge-colouringsForum of mathematics. Sigma","note":["Gesehen am 22.04.2024"],"part":{"extent":"32","text":"8(2020), Artikel-ID e37, Seite 1-32","volume":"8","pages":"1-32","year":"2020"},"titleAlt":[{"title":"Forum of mathematics / Sigma"}],"pubHistory":["1.2013 -"]}],"title":[{"title_sort":"rainbow blow-up lemma for almost optimally bounded edge-colourings","title":"A rainbow blow-up lemma for almost optimally bounded edge-colourings"}],"person":[{"family":"Ehard","given":"Stefan","roleDisplay":"VerfasserIn","display":"Ehard, Stefan","role":"aut"},{"display":"Glock, Stefan","roleDisplay":"VerfasserIn","role":"aut","family":"Glock","given":"Stefan"},{"role":"aut","display":"Joos, Felix","roleDisplay":"VerfasserIn","given":"Felix","family":"Joos"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 24.11.2020"],"recId":"1740776038","language":["eng"]} | ||
| SRT | |a EHARDSTEFARAINBOWBLO3020 | ||