A rainbow blow-up lemma for almost optimally bounded edge-colourings

A subgraph of an edge-coloured graph is called rainbow if all its edges have different colours. We prove a rainbow version of the blow-up lemma of Komlós, Sárközy, and Szemerédi that applies to almost optimally bounded colourings. A corollary of this is that there exists a rainbow copy of any bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ehard, Stefan (VerfasserIn) , Glock, Stefan (VerfasserIn) , Joos, Felix (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 30 October 2020
In: Forum of mathematics. Sigma
Year: 2020, Jahrgang: 8, Pages: 1-32
ISSN:2050-5094
DOI:10.1017/fms.2020.38
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1017/fms.2020.38
Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/forum-of-mathematics-sigma/article/rainbow-blowup-lemma-for-almost-optimally-bounded-edgecolourings/9C0AE7E446B2C742A920DB164A04412F
Volltext
Verfasserangaben:Stefan Ehard, Stefan Glock and Felix Joos

MARC

LEADER 00000caa a2200000 c 4500
001 1740776038
003 DE-627
005 20241212131815.0
007 cr uuu---uuuuu
008 201124s2020 xx |||||o 00| ||eng c
024 7 |a 10.1017/fms.2020.38  |2 doi 
035 |a (DE-627)1740776038 
035 |a (DE-599)KXP1740776038 
035 |a (OCoLC)1341378085 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Ehard, Stefan  |e VerfasserIn  |0 (DE-588)1193601223  |0 (DE-627)1672338697  |4 aut 
245 1 2 |a A rainbow blow-up lemma for almost optimally bounded edge-colourings  |c Stefan Ehard, Stefan Glock and Felix Joos 
264 1 |c 30 October 2020 
300 |a 32 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 24.11.2020 
520 |a A subgraph of an edge-coloured graph is called rainbow if all its edges have different colours. We prove a rainbow version of the blow-up lemma of Komlós, Sárközy, and Szemerédi that applies to almost optimally bounded colourings. A corollary of this is that there exists a rainbow copy of any bounded-degree spanning subgraph H in a quasirandom host graph G, assuming that the edge-colouring of G fulfills a boundedness condition that is asymptotically best possible. This has many applications beyond rainbow colourings: for example, to graph decompositions, orthogonal double covers, and graph labellings. 
650 4 |a 05B40 
650 4 |a 05C15 
650 4 |a 05C35 
650 4 |a 05C51 
650 4 |a 05C60 
650 4 |a 05C70 
650 4 |a 05C78 
650 4 |a blow-up lemma 
650 4 |a rainbow colourings 
700 1 |a Glock, Stefan  |e VerfasserIn  |0 (DE-588)1058404121  |0 (DE-627)796847827  |0 (DE-576)414583949  |4 aut 
700 1 |a Joos, Felix  |d 1989-  |e VerfasserIn  |0 (DE-588)1075006171  |0 (DE-627)832846244  |0 (DE-576)442747438  |4 aut 
773 0 8 |i Enthalten in  |t Forum of mathematics. Sigma  |d Cambridge : Cambridge Univ. Press, 2013  |g 8(2020), Artikel-ID e37, Seite 1-32  |h Online-Ressource  |w (DE-627)751861081  |w (DE-600)2723154-9  |w (DE-576)390372471  |x 2050-5094  |7 nnas  |a A rainbow blow-up lemma for almost optimally bounded edge-colourings 
773 1 8 |g volume:8  |g year:2020  |g elocationid:e37  |g pages:1-32  |g extent:32  |a A rainbow blow-up lemma for almost optimally bounded edge-colourings 
856 4 0 |u https://doi.org/10.1017/fms.2020.38  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.cambridge.org/core/journals/forum-of-mathematics-sigma/article/rainbow-blowup-lemma-for-almost-optimally-bounded-edgecolourings/9C0AE7E446B2C742A920DB164A04412F  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20201124 
993 |a Article 
994 |a 2020 
998 |g 1075006171  |a Joos, Felix  |m 1075006171:Joos, Felix  |d 110000  |d 110300  |e 110000PJ1075006171  |e 110300PJ1075006171  |k 0/110000/  |k 1/110000/110300/  |p 3  |y j 
999 |a KXP-PPN1740776038  |e 3811634550 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedDisp":"30 October 2020","dateIssuedKey":"2020"}],"id":{"eki":["1740776038"],"doi":["10.1017/fms.2020.38"]},"name":{"displayForm":["Stefan Ehard, Stefan Glock and Felix Joos"]},"physDesc":[{"extent":"32 S."}],"relHost":[{"id":{"issn":["2050-5094"],"eki":["751861081"],"zdb":["2723154-9"]},"origin":[{"publisherPlace":"Cambridge","dateIssuedDisp":"2013-","dateIssuedKey":"2013","publisher":"Cambridge Univ. Press"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"partname":"Sigma","title_sort":"Forum of mathematics","title":"Forum of mathematics"}],"language":["eng"],"recId":"751861081","type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"A rainbow blow-up lemma for almost optimally bounded edge-colouringsForum of mathematics. Sigma","note":["Gesehen am 22.04.2024"],"part":{"extent":"32","text":"8(2020), Artikel-ID e37, Seite 1-32","volume":"8","pages":"1-32","year":"2020"},"titleAlt":[{"title":"Forum of mathematics / Sigma"}],"pubHistory":["1.2013 -"]}],"title":[{"title_sort":"rainbow blow-up lemma for almost optimally bounded edge-colourings","title":"A rainbow blow-up lemma for almost optimally bounded edge-colourings"}],"person":[{"family":"Ehard","given":"Stefan","roleDisplay":"VerfasserIn","display":"Ehard, Stefan","role":"aut"},{"display":"Glock, Stefan","roleDisplay":"VerfasserIn","role":"aut","family":"Glock","given":"Stefan"},{"role":"aut","display":"Joos, Felix","roleDisplay":"VerfasserIn","given":"Felix","family":"Joos"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 24.11.2020"],"recId":"1740776038","language":["eng"]} 
SRT |a EHARDSTEFARAINBOWBLO3020