A high-granularity digital tracking calorimeter optimized for proton CT

A typical proton CT (pCT) detector comprises a tracking system, used to measure the proton position before and after the imaged object, and an energy/range detector to measure the residual proton range after crossing the object. The Bergen pCT collaboration was established to design and build a prot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alme, Johan (VerfasserIn) , Seco, Joao (VerfasserIn) , Volz, Lennart (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 22 October 2020
In: Frontiers in physics
Year: 2020, Jahrgang: 8, Pages: 1-20
ISSN:2296-424X
DOI:10.3389/fphy.2020.568243
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3389/fphy.2020.568243
Verlag, lizenzpflichtig, Volltext: https://www.frontiersin.org/articles/10.3389/fphy.2020.568243/full
Volltext
Verfasserangaben:Johan Alme, Gergely Gábor Barnaföldi, Rene Barthel, Vyacheslav Borshchov, Tea Bodova, Anthony van den Brink, Stephan Brons, Mamdouh Chaar, Viljar Eikeland, Grigory Feofilov, Georgi Genov, Silje Grimstad, Ola Grøttvik, Håvard Helstrup, Alf Herland, Annar Eivindplass Hilde, Sergey Igolkin, Ralf Keidel, Chinorat Kobdaj, Naomi van der Kolk, Oleksandr Listratenko, Qasim Waheed Malik, Shruti Mehendale, Ilker Meric, Simon Voigt Nesbø, Odd Harald Odland, Gábor Papp, Thomas Peitzmann, Helge Egil Seime Pettersen, Pierluigi Piersimoni, Maksym Protsenko, Attiq Ur Rehman, Matthias Richter, Dieter Röhrich, Andreas Tefre Samnøy, Joao Seco, Lena Setterdahl, Hesam Shafiee, Øistein Jelmert Skjolddal, Emilie Solheim, Arnon Songmoolnak, Ákos Sudár, Jarle Rambo Sølie, Ganesh Tambave, Ihor Tymchuk, Kjetil Ullaland, Håkon Andreas Underdal, Monika Varga-Köfaragó, Lennart Volz, Boris Wagner, Fredrik Mekki Widerøe, RenZheng Xiao, Shiming Yang, Hiroki Yokoyama

MARC

LEADER 00000caa a2200000 c 4500
001 1741495121
003 DE-627
005 20220819040513.0
007 cr uuu---uuuuu
008 201130s2020 xx |||||o 00| ||eng c
024 7 |a 10.3389/fphy.2020.568243  |2 doi 
035 |a (DE-627)1741495121 
035 |a (DE-599)KXP1741495121 
035 |a (OCoLC)1341382693 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Alme, Johan  |e VerfasserIn  |0 (DE-588)1222452367  |0 (DE-627)1741497698  |4 aut 
245 1 2 |a A high-granularity digital tracking calorimeter optimized for proton CT  |c Johan Alme, Gergely Gábor Barnaföldi, Rene Barthel, Vyacheslav Borshchov, Tea Bodova, Anthony van den Brink, Stephan Brons, Mamdouh Chaar, Viljar Eikeland, Grigory Feofilov, Georgi Genov, Silje Grimstad, Ola Grøttvik, Håvard Helstrup, Alf Herland, Annar Eivindplass Hilde, Sergey Igolkin, Ralf Keidel, Chinorat Kobdaj, Naomi van der Kolk, Oleksandr Listratenko, Qasim Waheed Malik, Shruti Mehendale, Ilker Meric, Simon Voigt Nesbø, Odd Harald Odland, Gábor Papp, Thomas Peitzmann, Helge Egil Seime Pettersen, Pierluigi Piersimoni, Maksym Protsenko, Attiq Ur Rehman, Matthias Richter, Dieter Röhrich, Andreas Tefre Samnøy, Joao Seco, Lena Setterdahl, Hesam Shafiee, Øistein Jelmert Skjolddal, Emilie Solheim, Arnon Songmoolnak, Ákos Sudár, Jarle Rambo Sølie, Ganesh Tambave, Ihor Tymchuk, Kjetil Ullaland, Håkon Andreas Underdal, Monika Varga-Köfaragó, Lennart Volz, Boris Wagner, Fredrik Mekki Widerøe, RenZheng Xiao, Shiming Yang, Hiroki Yokoyama 
264 1 |c 22 October 2020 
300 |a 20 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 30.11.2020 
520 |a A typical proton CT (pCT) detector comprises a tracking system, used to measure the proton position before and after the imaged object, and an energy/range detector to measure the residual proton range after crossing the object. The Bergen pCT collaboration was established to design and build a prototype pCT scanner with a high granularity digital tracking calorimeter (DTC) used as both tracking and energy/range detector. In this work the conceptual design and the layout of the mechanical and electronics implementation, along with a Monte Carlo (MC) simulation of the new pCT system are reported. The DTC is a multilayer structure with a lateral aperture of 27 cm × 15 cm, made of 41 detector/absorber sandwich layers (calorimeter), with aluminum (3.5 mm) used both as absorber and carrier, and 2 additional layers used as tracking system (rear trackers) positioned downstream of the imaged object; no tracking upstream the object is included. The rear tracker’s structure only differs from the calorimeter layers for the carrier made of ~200 μm carbon fleece and carbon paper (carbon-Epoxy sandwich), to minimize scattering. Each sensitive layer consists of 108 ALPIDE chip sensors (developed for ALICE, CERN) bonded on a polyimide flex and subsequently bonded to a larger flexible printed circuit board. Beam tests tailored to the pCT operation have been performed using high-energetic (50-220 MeV/u) proton and ion beams at the Heidelberg Ion-Beam Therapy Center (HIT) in Germany. These tests proved the ALPIDE response independent of occupancy and proportional to the particle energy deposition, making the distinction of different ion tracks possible. The read-out electronics is able to handle enough data to acquire a single 2D image in few seconds making the system fast enough to be used in a clinical environment. For the reconstructed images in the modeled MC simulation, the water equivalent path length error is lower than 2 mm, and the relative stopping power accuracy is better than 0.4%. Thanks to its ability to detect different types of radiation and its specific design, the pCT scanner can be employed for additional online applications during the treatment, such as in-situ proton range verification. 
650 4 |a ALPIDE 
650 4 |a CMOS 
650 4 |a Hadrontherapy 
650 4 |a Monte Carlo (MC) 
650 4 |a Proton CT 
700 1 |a Seco, Joao  |e VerfasserIn  |0 (DE-588)1120955866  |0 (DE-627)874146615  |0 (DE-576)480627010  |4 aut 
700 1 |a Volz, Lennart  |d 1992-  |e VerfasserIn  |0 (DE-588)1164508121  |0 (DE-627)1028942141  |0 (DE-576)510057004  |4 aut 
773 0 8 |i Enthalten in  |t Frontiers in physics  |d Lausanne : Frontiers Media, 2013  |g 8(2020), Artikel-ID 568243, Seite 1-20  |h Online-Ressource  |w (DE-627)750371749  |w (DE-600)2721033-9  |w (DE-576)384591213  |x 2296-424X  |7 nnas  |a A high-granularity digital tracking calorimeter optimized for proton CT 
773 1 8 |g volume:8  |g year:2020  |g elocationid:568243  |g pages:1-20  |g extent:20  |a A high-granularity digital tracking calorimeter optimized for proton CT 
856 4 0 |u https://doi.org/10.3389/fphy.2020.568243  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.frontiersin.org/articles/10.3389/fphy.2020.568243/full  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20201130 
993 |a Article 
994 |a 2020 
998 |g 1164508121  |a Volz, Lennart  |m 1164508121:Volz, Lennart  |d 130000  |e 130000PV1164508121  |k 0/130000/  |p 49 
998 |g 1120955866  |a Seco, Joao  |m 1120955866:Seco, Joao  |d 130000  |e 130000PS1120955866  |k 0/130000/  |p 36 
999 |a KXP-PPN1741495121  |e 3815030064 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"name":{"displayForm":["Johan Alme, Gergely Gábor Barnaföldi, Rene Barthel, Vyacheslav Borshchov, Tea Bodova, Anthony van den Brink, Stephan Brons, Mamdouh Chaar, Viljar Eikeland, Grigory Feofilov, Georgi Genov, Silje Grimstad, Ola Grøttvik, Håvard Helstrup, Alf Herland, Annar Eivindplass Hilde, Sergey Igolkin, Ralf Keidel, Chinorat Kobdaj, Naomi van der Kolk, Oleksandr Listratenko, Qasim Waheed Malik, Shruti Mehendale, Ilker Meric, Simon Voigt Nesbø, Odd Harald Odland, Gábor Papp, Thomas Peitzmann, Helge Egil Seime Pettersen, Pierluigi Piersimoni, Maksym Protsenko, Attiq Ur Rehman, Matthias Richter, Dieter Röhrich, Andreas Tefre Samnøy, Joao Seco, Lena Setterdahl, Hesam Shafiee, Øistein Jelmert Skjolddal, Emilie Solheim, Arnon Songmoolnak, Ákos Sudár, Jarle Rambo Sølie, Ganesh Tambave, Ihor Tymchuk, Kjetil Ullaland, Håkon Andreas Underdal, Monika Varga-Köfaragó, Lennart Volz, Boris Wagner, Fredrik Mekki Widerøe, RenZheng Xiao, Shiming Yang, Hiroki Yokoyama"]},"id":{"doi":["10.3389/fphy.2020.568243"],"eki":["1741495121"]},"physDesc":[{"extent":"20 S."}],"title":[{"title_sort":"high-granularity digital tracking calorimeter optimized for proton CT","title":"A high-granularity digital tracking calorimeter optimized for proton CT"}],"person":[{"family":"Alme","display":"Alme, Johan","given":"Johan","role":"aut"},{"role":"aut","display":"Seco, Joao","given":"Joao","family":"Seco"},{"display":"Volz, Lennart","given":"Lennart","role":"aut","family":"Volz"}],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"22 October 2020"}],"note":["Gesehen am 30.11.2020"],"relHost":[{"id":{"eki":["750371749"],"zdb":["2721033-9"],"issn":["2296-424X"]},"language":["eng"],"recId":"750371749","pubHistory":["2013 -"],"origin":[{"publisherPlace":"Lausanne","publisher":"Frontiers Media","dateIssuedDisp":"2013-","dateIssuedKey":"2013"}],"note":["Gesehen am 12. Dezember 2019"],"physDesc":[{"extent":"Online-Ressource"}],"disp":"A high-granularity digital tracking calorimeter optimized for proton CTFrontiers in physics","part":{"text":"8(2020), Artikel-ID 568243, Seite 1-20","year":"2020","pages":"1-20","volume":"8","extent":"20"},"title":[{"title_sort":"Frontiers in physics","title":"Frontiers in physics"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"titleAlt":[{"title":"FPHY"}]}],"recId":"1741495121"} 
SRT |a ALMEJOHANSHIGHGRANUL2220