A deep learning approach validates genetic risk factors for late toxicity after prostate cancer radiotherapy in a REQUITE multi-national cohort

Background REQUITE (validating pREdictive models and biomarkers of radiotherapy toxicity to reduce side effects and improve QUalITy of lifE in cancer survivors) is an international prospective cohort study. The purpose of this project was to analyse a cohort of patients recruited into REQUITE using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Massi, Michela Carlotta (VerfasserIn) , Sperk, Elena (VerfasserIn) , Herskind, Carsten (VerfasserIn) , Veldwijk, Marlon Romano (VerfasserIn) , Chang-Claude, Jenny (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 October 2020
In: Frontiers in oncology
Year: 2020, Jahrgang: 10
ISSN:2234-943X
DOI:10.3389/fonc.2020.541281
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3389/fonc.2020.541281
Verlag, lizenzpflichtig, Volltext: https://www.frontiersin.org/articles/10.3389/fonc.2020.541281/full
Volltext
Verfasserangaben:Michela Carlotta Massi, Francesca Gasperoni, Francesca Ieva, Anna Maria Paganoni, Paolo Zunino, Andrea Manzoni, Nicola Rares Franco, Liv Veldeman, Piet Ost, Valérie Fonteyne, Christopher J. Talbot, Tim Rattay, Adam Webb, Paul R. Symonds, Kerstie Johnson, Maarten Lambrecht, Karin Haustermans, Gert De Meerleer, Dirk de Ruysscher, Ben Vanneste, Evert Van Limbergen, Ananya Choudhury, Rebecca M. Elliott, Elena Sperk, Carsten Herskind, Marlon R. Veldwijk, Barbara Avuzzi, Tommaso Giandini, Riccardo Valdagni, Alessandro Cicchetti, David Azria, Marie-Pierre Farcy Jacquet, Barry S. Rosenstein, Richard G. Stock, Kayla Collado, Ana Vega, Miguel Elías Aguado-Barrera, Patricia Calvo, Alison M. Dunning, Laura Fachal, Sarah L. Kerns, Debbie Payne, Jenny Chang-Claude, Petra Seibold, Catharine M. L. West, Tiziana Rancati and on behalf of the REQUITE Consortium

MARC

LEADER 00000caa a2200000 c 4500
001 1741838703
003 DE-627
005 20220819042330.0
007 cr uuu---uuuuu
008 201203s2020 xx |||||o 00| ||eng c
024 7 |a 10.3389/fonc.2020.541281  |2 doi 
035 |a (DE-627)1741838703 
035 |a (DE-599)KXP1741838703 
035 |a (OCoLC)1341383046 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Massi, Michela Carlotta  |e VerfasserIn  |0 (DE-588)1222680297  |0 (DE-627)1741840821  |4 aut 
245 1 2 |a A deep learning approach validates genetic risk factors for late toxicity after prostate cancer radiotherapy in a REQUITE multi-national cohort  |c Michela Carlotta Massi, Francesca Gasperoni, Francesca Ieva, Anna Maria Paganoni, Paolo Zunino, Andrea Manzoni, Nicola Rares Franco, Liv Veldeman, Piet Ost, Valérie Fonteyne, Christopher J. Talbot, Tim Rattay, Adam Webb, Paul R. Symonds, Kerstie Johnson, Maarten Lambrecht, Karin Haustermans, Gert De Meerleer, Dirk de Ruysscher, Ben Vanneste, Evert Van Limbergen, Ananya Choudhury, Rebecca M. Elliott, Elena Sperk, Carsten Herskind, Marlon R. Veldwijk, Barbara Avuzzi, Tommaso Giandini, Riccardo Valdagni, Alessandro Cicchetti, David Azria, Marie-Pierre Farcy Jacquet, Barry S. Rosenstein, Richard G. Stock, Kayla Collado, Ana Vega, Miguel Elías Aguado-Barrera, Patricia Calvo, Alison M. Dunning, Laura Fachal, Sarah L. Kerns, Debbie Payne, Jenny Chang-Claude, Petra Seibold, Catharine M. L. West, Tiziana Rancati and on behalf of the REQUITE Consortium 
264 1 |c 15 October 2020 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 03.12.2020 
520 |a Background REQUITE (validating pREdictive models and biomarkers of radiotherapy toxicity to reduce side effects and improve QUalITy of lifE in cancer survivors) is an international prospective cohort study. The purpose of this project was to analyse a cohort of patients recruited into REQUITE using a deep learning algorithm to identify patient-specific features associated with the development of toxicity, and test the approach by attempting to validate previously published genetic risk factors. Methods The study involved REQUITE prostate cancer patients treated with external beam radiotherapy who had complete 2-year follow-up. We used five separate late toxicity endpoints: ≥grade 1 late rectal bleeding, ≥grade 2 urinary frequency, ≥grade 1 haematuria, ≥ grade 2 nocturia, ≥ grade 1 decreased urinary stream. Forty-three single nucleotide polymorphisms (SNPs) already reported in the literature to be associated with the toxicity endpoints were included in the analysis. No SNP had been studied before in the REQUITE cohort. A Deep Sparse AutoEncoder (DSAE) was trained to recognize features (SNPs) identifying patients with no toxicity and tested on a different independent mixed population including patients without and with toxicity. Results 1401 patients were included, and toxicity rates were: rectal bleeding 11.7%, urinary frequency 4%, haematuria 5.5%, nocturia 7.8%, decreased urinary stream 17.1%. 24 of the 43 SNPs that were associated with the toxicity endpoints were validated as identifying patients with toxicity. Twenty of the 24 SNPs were associated with the same toxicity endpoint as reported in the literature: 9 SNPs for urinary symptoms and 11 SNPs for overall toxicity. The other 4 SNPs were associated with a different endpoint. Conclusion Deep learning algorithms can validate SNPs associated with toxicity after radiotherapy for prostate cancer. The method should be studied further to identify polygenic SNP risk signatures for radiotherapy toxicity. The signatures could then be included in integrated normal tissue complication probability models and tested for their ability to personalize radiotherapy treatment planning. 
650 4 |a Autoencoder 
650 4 |a deep learning 
650 4 |a genetic risk factors 
650 4 |a late toxicity 
650 4 |a Outlier detection 
650 4 |a prostate cancer 
650 4 |a Radiotherapy 
650 4 |a snps 
650 4 |a Validation 
700 1 |a Sperk, Elena  |d 1983-  |e VerfasserIn  |0 (DE-588)141654252  |0 (DE-627)630406650  |0 (DE-576)325031231  |4 aut 
700 1 |a Herskind, Carsten  |d 1952-  |e VerfasserIn  |0 (DE-588)1028380488  |0 (DE-627)730637409  |0 (DE-576)375919325  |4 aut 
700 1 |a Veldwijk, Marlon Romano  |d 1973-  |e VerfasserIn  |0 (DE-588)124783562  |0 (DE-627)366051938  |0 (DE-576)294500278  |4 aut 
700 1 |a Chang-Claude, Jenny  |e VerfasserIn  |0 (DE-588)1049304993  |0 (DE-627)781626188  |0 (DE-576)168344475  |4 aut 
773 0 8 |i Enthalten in  |t Frontiers in oncology  |d Lausanne : Frontiers Media, 2011  |g 10(2020) Artikel-Nummer 541281, 15 Seiten  |h Online-Ressource  |w (DE-627)684965518  |w (DE-600)2649216-7  |w (DE-576)35841184X  |x 2234-943X  |7 nnas  |a A deep learning approach validates genetic risk factors for late toxicity after prostate cancer radiotherapy in a REQUITE multi-national cohort 
773 1 8 |g volume:10  |g year:2020  |g extent:15  |a A deep learning approach validates genetic risk factors for late toxicity after prostate cancer radiotherapy in a REQUITE multi-national cohort 
856 4 0 |u https://doi.org/10.3389/fonc.2020.541281  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.frontiersin.org/articles/10.3389/fonc.2020.541281/full  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20201203 
993 |a Article 
994 |a 2020 
998 |g 1049304993  |a Chang-Claude, Jenny  |m 1049304993:Chang-Claude, Jenny  |d 50000  |e 50000PC1049304993  |k 0/50000/  |p 43 
998 |g 124783562  |a Veldwijk, Marlon Romano  |m 124783562:Veldwijk, Marlon Romano  |d 60000  |d 63000  |e 60000PV124783562  |e 63000PV124783562  |k 0/60000/  |k 1/60000/63000/  |p 26 
998 |g 1028380488  |a Herskind, Carsten  |m 1028380488:Herskind, Carsten  |d 60000  |d 63000  |e 60000PH1028380488  |e 63000PH1028380488  |k 0/60000/  |k 1/60000/63000/  |p 25 
998 |g 141654252  |a Sperk, Elena  |m 141654252:Sperk, Elena  |d 60000  |d 63000  |e 60000PS141654252  |e 63000PS141654252  |k 0/60000/  |k 1/60000/63000/  |p 24 
999 |a KXP-PPN1741838703  |e 3816515088 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Massi, Michela Carlotta","given":"Michela Carlotta","family":"Massi"},{"role":"aut","roleDisplay":"VerfasserIn","given":"Elena","display":"Sperk, Elena","family":"Sperk"},{"family":"Herskind","roleDisplay":"VerfasserIn","display":"Herskind, Carsten","given":"Carsten","role":"aut"},{"display":"Veldwijk, Marlon Romano","roleDisplay":"VerfasserIn","given":"Marlon Romano","family":"Veldwijk","role":"aut"},{"family":"Chang-Claude","roleDisplay":"VerfasserIn","display":"Chang-Claude, Jenny","given":"Jenny","role":"aut"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"deep learning approach validates genetic risk factors for late toxicity after prostate cancer radiotherapy in a REQUITE multi-national cohort","title":"A deep learning approach validates genetic risk factors for late toxicity after prostate cancer radiotherapy in a REQUITE multi-national cohort"}],"recId":"1741838703","id":{"eki":["1741838703"],"doi":["10.3389/fonc.2020.541281"]},"name":{"displayForm":["Michela Carlotta Massi, Francesca Gasperoni, Francesca Ieva, Anna Maria Paganoni, Paolo Zunino, Andrea Manzoni, Nicola Rares Franco, Liv Veldeman, Piet Ost, Valérie Fonteyne, Christopher J. Talbot, Tim Rattay, Adam Webb, Paul R. Symonds, Kerstie Johnson, Maarten Lambrecht, Karin Haustermans, Gert De Meerleer, Dirk de Ruysscher, Ben Vanneste, Evert Van Limbergen, Ananya Choudhury, Rebecca M. Elliott, Elena Sperk, Carsten Herskind, Marlon R. Veldwijk, Barbara Avuzzi, Tommaso Giandini, Riccardo Valdagni, Alessandro Cicchetti, David Azria, Marie-Pierre Farcy Jacquet, Barry S. Rosenstein, Richard G. Stock, Kayla Collado, Ana Vega, Miguel Elías Aguado-Barrera, Patricia Calvo, Alison M. Dunning, Laura Fachal, Sarah L. Kerns, Debbie Payne, Jenny Chang-Claude, Petra Seibold, Catharine M. L. West, Tiziana Rancati and on behalf of the REQUITE Consortium"]},"note":["Gesehen am 03.12.2020"],"relHost":[{"title":[{"title_sort":"Frontiers in oncology","title":"Frontiers in oncology"}],"language":["eng"],"disp":"A deep learning approach validates genetic risk factors for late toxicity after prostate cancer radiotherapy in a REQUITE multi-national cohortFrontiers in oncology","part":{"volume":"10","text":"10(2020) Artikel-Nummer 541281, 15 Seiten","extent":"15","year":"2020"},"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 07.11.13"],"type":{"media":"Online-Ressource","bibl":"periodical"},"origin":[{"publisher":"Frontiers Media","dateIssuedDisp":"2011-","publisherPlace":"Lausanne","dateIssuedKey":"2011"}],"pubHistory":["2011 -"],"recId":"684965518","id":{"issn":["2234-943X"],"zdb":["2649216-7"],"eki":["684965518"]}}],"physDesc":[{"extent":"15 S."}],"language":["eng"],"origin":[{"dateIssuedDisp":"15 October 2020","dateIssuedKey":"2020"}]} 
SRT |a MASSIMICHEDEEPLEARNI1520