Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT

Purpose: In image-guided radiation therapy (IGRT) valuable information for patient positioning, dose verification, and adaptive treatment planning is provided by an additional kV imaging unit. However, due to the limited gantry rotation speed during treatment the typical acquisition time is quite lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brehm, Marcus (VerfasserIn) , Paysan, Pascal (VerfasserIn) , Oelhafen, Markus (VerfasserIn) , Kachelrieß, Marc (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 18 August 2013
In: Medical physics
Year: 2013, Jahrgang: 40, Heft: 10
ISSN:2473-4209
DOI:https://doi.org/10.1118/1.4820537
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/https://doi.org/10.1118/1.4820537
Verlag, lizenzpflichtig, Volltext: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.4820537
Volltext
Verfasserangaben:Marcus Brehm, Pascal Paysan, Markus Oelhafen, Marc Kachelrieß

MARC

LEADER 00000caa a2200000 c 4500
001 1742038417
003 DE-627
005 20220819043305.0
007 cr uuu---uuuuu
008 201204s2013 xx |||||o 00| ||eng c
024 7 |a 10.1118/1.4820537  |2 doi 
035 |a (DE-627)1742038417 
035 |a (DE-599)KXP1742038417 
035 |a (OCoLC)1341383152 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Brehm, Marcus  |d 1983-  |e VerfasserIn  |0 (DE-588)1053008929  |0 (DE-627)789520273  |0 (DE-576)408736089  |4 aut 
245 1 0 |a Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT  |c Marcus Brehm, Pascal Paysan, Markus Oelhafen, Marc Kachelrieß 
264 1 |c 18 August 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 04.12.2020 
520 |a Purpose: In image-guided radiation therapy (IGRT) valuable information for patient positioning, dose verification, and adaptive treatment planning is provided by an additional kV imaging unit. However, due to the limited gantry rotation speed during treatment the typical acquisition time is quite long. Tomographic images of the thorax suffer from motion blurring or, if a gated 4D reconstruction is performed, from significant streak artifacts. Our purpose is to provide a method that reliably estimates respiratory motion in presence of severe artifacts. The estimated motion vector fields are then used for motion-compensated image reconstruction to provide high quality respiratory-correlated 4D volumes for on-board cone-beam CT (CBCT) scans. Methods: The proposed motion estimation method consists of a model that explicitly addresses image artifacts because in presence of severe artifacts state-of-the-art registration methods tend to register artifacts rather than anatomy. Our artifact model, e.g., generates streak artifacts very similar to those included in the gated 4D CBCT images, but it does not include respiratory motion. In combination with a registration strategy, the model gives an error estimate that is used to compensate the corresponding errors of the motion vector fields that are estimated from the gated 4D CBCT images. The algorithm is tested in combination with a cyclic registration approach using temporal constraints and with a standard 3D-3D registration approach. A qualitative and quantitative evaluation of the motion-compensated results was performed using simulated rawdata created on basis of clinical CT data. Further evaluation includes patient data which were scanned with an on-board CBCT system. Results: The model-based motion estimation method is nearly insensitive to image artifacts of gated 4D reconstructions as they are caused by angular undersampling. The motion is accurately estimated and our motion-compensated image reconstruction algorithm can correct for it. Motion artifacts of 3D standard reconstruction are significantly reduced, while almost no new artifacts are introduced. Conclusions: Using the artifact model allows to accurately estimate and compensate for patient motion, even if the initial reconstructions are of very low image quality. Using our approach together with a cyclic registration algorithm yields a combination which shows almost no sensitivity to sparse-view artifacts and thus ensures both high spatial and high temporal resolution. 
650 4 |a 4D CBCT 
650 4 |a Analysis of motion 
650 4 |a angular undersampling 
650 4 |a artifact model 
650 4 |a Biological material 
650 4 |a biological organs 
650 4 |a Computed tomography 
650 4 |a Computerised tomographs 
650 4 |a computerised tomography 
650 4 |a Cone beam computed tomography 
650 4 |a cone-beam computed tomography (CBCT) 
650 4 |a Digital computing or data processing equipment or methods 
650 4 |a dosimetry 
650 4 |a e.g. blood 
650 4 |a Haemocytometers 
650 4 |a Image data processing or generation 
650 4 |a image reconstruction 
650 4 |a Image reconstruction 
650 4 |a image registration 
650 4 |a image resolution 
650 4 |a Image sensors 
650 4 |a image-guided radiation therapy (IGRT) 
650 4 |a in general 
650 4 |a Medical image artifacts 
650 4 |a medical image processing 
650 4 |a Medical image quality 
650 4 |a Medical image reconstruction 
650 4 |a Medical imaging 
650 4 |a motion compensation 
650 4 |a motion estimation 
650 4 |a Motion estimation 
650 4 |a on-board imaging 
650 4 |a radiation therapy 
650 4 |a specially adapted for specific applications 
650 4 |a urine 
650 4 |a Vector fields 
700 1 |a Paysan, Pascal  |e VerfasserIn  |4 aut 
700 1 |a Oelhafen, Markus  |e VerfasserIn  |4 aut 
700 1 |a Kachelrieß, Marc  |d 1969-  |e VerfasserIn  |0 (DE-588)120866544  |0 (DE-627)705049280  |0 (DE-576)292422725  |4 aut 
773 0 8 |i Enthalten in  |t Medical physics  |d Hoboken, NJ : Wiley, 1974  |g 40(2013,10) Artikel-Nummer 101913, 13 Seiten  |h Online-Ressource  |w (DE-627)265784867  |w (DE-600)1466421-5  |w (DE-576)074891243  |x 2473-4209  |7 nnas  |a Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT 
773 1 8 |g volume:40  |g year:2013  |g number:10  |a Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT 
856 4 0 |u https://doi.org/https://doi.org/10.1118/1.4820537  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.4820537  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20201204 
993 |a Article 
994 |a 2013 
998 |g 120866544  |a Kachelrieß, Marc  |m 120866544:Kachelrieß, Marc  |d 50000  |e 50000PK120866544  |k 0/50000/  |p 4  |y j 
999 |a KXP-PPN1742038417  |e 3817298420 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title":"Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT","title_sort":"Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT"}],"language":["eng"],"person":[{"family":"Brehm","display":"Brehm, Marcus","given":"Marcus","role":"aut","roleDisplay":"VerfasserIn"},{"display":"Paysan, Pascal","role":"aut","roleDisplay":"VerfasserIn","given":"Pascal","family":"Paysan"},{"display":"Oelhafen, Markus","given":"Markus","roleDisplay":"VerfasserIn","role":"aut","family":"Oelhafen"},{"family":"Kachelrieß","given":"Marc","roleDisplay":"VerfasserIn","role":"aut","display":"Kachelrieß, Marc"}],"relHost":[{"pubHistory":["1.1974 -"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 01.08.2025"],"recId":"265784867","part":{"text":"40(2013,10) Artikel-Nummer 101913, 13 Seiten","year":"2013","volume":"40","issue":"10"},"id":{"issn":["2473-4209","1522-8541"],"zdb":["1466421-5"],"eki":["265784867"]},"titleAlt":[{"title":"Medical physics online"}],"name":{"displayForm":["American Association of Physicists in Medicine ; American Institute of Physics"]},"origin":[{"dateIssuedKey":"1974","publisherPlace":"Hoboken, NJ ; College Park, Md. ; New York, NY","publisher":"Wiley ; AAPM ; [Verlag nicht ermittelbar]","dateIssuedDisp":"1974-"}],"physDesc":[{"extent":"Online-Ressource"}],"disp":"Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CTMedical physics","language":["eng"],"title":[{"title_sort":"Medical physics","title":"Medical physics"}]}],"name":{"displayForm":["Marcus Brehm, Pascal Paysan, Markus Oelhafen, Marc Kachelrieß"]},"origin":[{"dateIssuedDisp":"18 August 2013","dateIssuedKey":"2013"}],"id":{"doi":["10.1118/1.4820537"],"eki":["1742038417"]},"recId":"1742038417","note":["Gesehen am 04.12.2020"],"type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a BREHMMARCUARTIFACTRE1820