Boosting Monte Carlo sampling with a non-Gaussian fit

We propose a new method, called Monte Carlo Posterior Fit, to boost the Monte Carlo sampling of likelihood (posterior) functions. The idea is to approximate the posterior function by an analytical multidimensional non-Gaussian fit. The many free parameters of this fit can be obtained by a smaller sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Amendola, Luca (VerfasserIn) , Gómez-Valent, Adrià (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 14 August 2020
In: Monthly notices of the Royal Astronomical Society
Year: 2020, Jahrgang: 498, Heft: 1, Pages: 181-193
ISSN:1365-2966
DOI:10.1093/mnras/staa2362
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/mnras/staa2362
Volltext
Verfasserangaben:Luca Amendola and Adrià Gómez-Valent

MARC

LEADER 00000caa a2200000 c 4500
001 1742419852
003 DE-627
005 20220819050922.0
007 cr uuu---uuuuu
008 201210s2020 xx |||||o 00| ||eng c
024 7 |a 10.1093/mnras/staa2362  |2 doi 
035 |a (DE-627)1742419852 
035 |a (DE-599)KXP1742419852 
035 |a (OCoLC)1341383413 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Amendola, Luca  |d 1963-  |e VerfasserIn  |0 (DE-588)1029171270  |0 (DE-627)732547482  |0 (DE-576)377045128  |4 aut 
245 1 0 |a Boosting Monte Carlo sampling with a non-Gaussian fit  |c Luca Amendola and Adrià Gómez-Valent 
264 1 |c 14 August 2020 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 10.12.2020 
520 |a We propose a new method, called Monte Carlo Posterior Fit, to boost the Monte Carlo sampling of likelihood (posterior) functions. The idea is to approximate the posterior function by an analytical multidimensional non-Gaussian fit. The many free parameters of this fit can be obtained by a smaller sampling than is needed to derive the full numerical posterior. In the examples that we consider, based on supernovae and cosmic microwave background data, we find that one needs an order of magnitude smaller sampling than in the standard algorithms to achieve comparable precision. This method can be applied to a variety of situations and is expected to significantly improve the performance of the Monte Carlo routines in all the cases in which sampling is very time consuming. Finally, it can also be applied to Fisher matrix forecasts and can help solve various limitations of the standard approach. 
700 1 |a Gómez-Valent, Adrià  |d 1990-  |e VerfasserIn  |0 (DE-588)1204149178  |0 (DE-627)1689290803  |4 aut 
773 0 8 |i Enthalten in  |a Royal Astronomical Society  |t Monthly notices of the Royal Astronomical Society  |d Oxford : Oxford Univ. Press, 1827  |g 498(2020), 1, Seite 181-193  |h Online-Ressource  |w (DE-627)314059164  |w (DE-600)2016084-7  |w (DE-576)090955420  |x 1365-2966  |7 nnas 
773 1 8 |g volume:498  |g year:2020  |g number:1  |g pages:181-193  |g extent:13  |a Boosting Monte Carlo sampling with a non-Gaussian fit 
856 4 0 |u https://doi.org/10.1093/mnras/staa2362  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20201210 
993 |a Article 
994 |a 2020 
998 |g 1204149178  |a Gómez-Valent, Adrià  |m 1204149178:Gómez-Valent, Adrià  |d 130000  |d 130300  |e 130000PG1204149178  |e 130300PG1204149178  |k 0/130000/  |k 1/130000/130300/  |p 2  |y j 
998 |g 1029171270  |a Amendola, Luca  |m 1029171270:Amendola, Luca  |d 130000  |d 130300  |e 130000PA1029171270  |e 130300PA1029171270  |k 0/130000/  |k 1/130000/130300/  |p 1  |x j 
999 |a KXP-PPN1742419852  |e 3822253006 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"13 S."}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"eki":["1742419852"],"doi":["10.1093/mnras/staa2362"]},"title":[{"title":"Boosting Monte Carlo sampling with a non-Gaussian fit","title_sort":"Boosting Monte Carlo sampling with a non-Gaussian fit"}],"relHost":[{"pubHistory":["1.1827 -"],"part":{"issue":"1","pages":"181-193","text":"498(2020), 1, Seite 181-193","volume":"498","extent":"13","year":"2020"},"id":{"eki":["314059164"],"doi":["10.1111/(ISSN)1365-2966"],"issn":["1365-2966"],"zdb":["2016084-7"]},"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"314059164","origin":[{"publisherPlace":"Oxford ; Oxford [u.a.] ; Oxford [u.a.]","dateIssuedKey":"1827","publisher":"Oxford Univ. Press ; Blackwell ; Wiley-Blackwell","dateIssuedDisp":"1827-"}],"language":["eng"],"title":[{"title_sort":"Monthly notices of the Royal Astronomical Society","title":"Monthly notices of the Royal Astronomical Society"}],"physDesc":[{"extent":"Online-Ressource"}],"disp":"Royal Astronomical SocietyMonthly notices of the Royal Astronomical Society","note":["Gesehen am 15.01.2018"],"corporate":[{"role":"aut","display":"Royal Astronomical Society"}]}],"person":[{"display":"Amendola, Luca","role":"aut","family":"Amendola","given":"Luca"},{"role":"aut","display":"Gómez-Valent, Adrià","given":"Adrià","family":"Gómez-Valent"}],"language":["eng"],"origin":[{"dateIssuedDisp":"14 August 2020","dateIssuedKey":"2020"}],"name":{"displayForm":["Luca Amendola and Adrià Gómez-Valent"]},"recId":"1742419852","note":["Gesehen am 10.12.2020"]} 
SRT |a AMENDOLALUBOOSTINGMO1420