Boosting Monte Carlo sampling with a non-Gaussian fit
We propose a new method, called Monte Carlo Posterior Fit, to boost the Monte Carlo sampling of likelihood (posterior) functions. The idea is to approximate the posterior function by an analytical multidimensional non-Gaussian fit. The many free parameters of this fit can be obtained by a smaller sa...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
14 August 2020
|
| In: |
Monthly notices of the Royal Astronomical Society
Year: 2020, Jahrgang: 498, Heft: 1, Pages: 181-193 |
| ISSN: | 1365-2966 |
| DOI: | 10.1093/mnras/staa2362 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/mnras/staa2362 |
| Verfasserangaben: | Luca Amendola and Adrià Gómez-Valent |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1742419852 | ||
| 003 | DE-627 | ||
| 005 | 20220819050922.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 201210s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1093/mnras/staa2362 |2 doi | |
| 035 | |a (DE-627)1742419852 | ||
| 035 | |a (DE-599)KXP1742419852 | ||
| 035 | |a (OCoLC)1341383413 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Amendola, Luca |d 1963- |e VerfasserIn |0 (DE-588)1029171270 |0 (DE-627)732547482 |0 (DE-576)377045128 |4 aut | |
| 245 | 1 | 0 | |a Boosting Monte Carlo sampling with a non-Gaussian fit |c Luca Amendola and Adrià Gómez-Valent |
| 264 | 1 | |c 14 August 2020 | |
| 300 | |a 13 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 10.12.2020 | ||
| 520 | |a We propose a new method, called Monte Carlo Posterior Fit, to boost the Monte Carlo sampling of likelihood (posterior) functions. The idea is to approximate the posterior function by an analytical multidimensional non-Gaussian fit. The many free parameters of this fit can be obtained by a smaller sampling than is needed to derive the full numerical posterior. In the examples that we consider, based on supernovae and cosmic microwave background data, we find that one needs an order of magnitude smaller sampling than in the standard algorithms to achieve comparable precision. This method can be applied to a variety of situations and is expected to significantly improve the performance of the Monte Carlo routines in all the cases in which sampling is very time consuming. Finally, it can also be applied to Fisher matrix forecasts and can help solve various limitations of the standard approach. | ||
| 700 | 1 | |a Gómez-Valent, Adrià |d 1990- |e VerfasserIn |0 (DE-588)1204149178 |0 (DE-627)1689290803 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a Royal Astronomical Society |t Monthly notices of the Royal Astronomical Society |d Oxford : Oxford Univ. Press, 1827 |g 498(2020), 1, Seite 181-193 |h Online-Ressource |w (DE-627)314059164 |w (DE-600)2016084-7 |w (DE-576)090955420 |x 1365-2966 |7 nnas |
| 773 | 1 | 8 | |g volume:498 |g year:2020 |g number:1 |g pages:181-193 |g extent:13 |a Boosting Monte Carlo sampling with a non-Gaussian fit |
| 856 | 4 | 0 | |u https://doi.org/10.1093/mnras/staa2362 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20201210 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1204149178 |a Gómez-Valent, Adrià |m 1204149178:Gómez-Valent, Adrià |d 130000 |d 130300 |e 130000PG1204149178 |e 130300PG1204149178 |k 0/130000/ |k 1/130000/130300/ |p 2 |y j | ||
| 998 | |g 1029171270 |a Amendola, Luca |m 1029171270:Amendola, Luca |d 130000 |d 130300 |e 130000PA1029171270 |e 130300PA1029171270 |k 0/130000/ |k 1/130000/130300/ |p 1 |x j | ||
| 999 | |a KXP-PPN1742419852 |e 3822253006 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"13 S."}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"eki":["1742419852"],"doi":["10.1093/mnras/staa2362"]},"title":[{"title":"Boosting Monte Carlo sampling with a non-Gaussian fit","title_sort":"Boosting Monte Carlo sampling with a non-Gaussian fit"}],"relHost":[{"pubHistory":["1.1827 -"],"part":{"issue":"1","pages":"181-193","text":"498(2020), 1, Seite 181-193","volume":"498","extent":"13","year":"2020"},"id":{"eki":["314059164"],"doi":["10.1111/(ISSN)1365-2966"],"issn":["1365-2966"],"zdb":["2016084-7"]},"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"314059164","origin":[{"publisherPlace":"Oxford ; Oxford [u.a.] ; Oxford [u.a.]","dateIssuedKey":"1827","publisher":"Oxford Univ. Press ; Blackwell ; Wiley-Blackwell","dateIssuedDisp":"1827-"}],"language":["eng"],"title":[{"title_sort":"Monthly notices of the Royal Astronomical Society","title":"Monthly notices of the Royal Astronomical Society"}],"physDesc":[{"extent":"Online-Ressource"}],"disp":"Royal Astronomical SocietyMonthly notices of the Royal Astronomical Society","note":["Gesehen am 15.01.2018"],"corporate":[{"role":"aut","display":"Royal Astronomical Society"}]}],"person":[{"display":"Amendola, Luca","role":"aut","family":"Amendola","given":"Luca"},{"role":"aut","display":"Gómez-Valent, Adrià","given":"Adrià","family":"Gómez-Valent"}],"language":["eng"],"origin":[{"dateIssuedDisp":"14 August 2020","dateIssuedKey":"2020"}],"name":{"displayForm":["Luca Amendola and Adrià Gómez-Valent"]},"recId":"1742419852","note":["Gesehen am 10.12.2020"]} | ||
| SRT | |a AMENDOLALUBOOSTINGMO1420 | ||