Druggability assessment in TRAPP using machine learning approaches
Accurate protein druggability predictions are important for the selection of drug targets in the early stages of drug discovery. Because of the flexible nature of proteins, the druggability of a binding pocket may vary due to conformational changes. We have therefore developed two statistical models...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
27 February 2020
|
| In: |
Journal of chemical information and modeling
Year: 2020, Volume: 60, Issue: 3, Pages: 1685-1699 |
| ISSN: | 1549-960X |
| DOI: | 10.1021/acs.jcim.9b01185 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1021/acs.jcim.9b01185 |
| Author Notes: | Jui-Hung Yuan, Sungho Bosco Han, Stefan Richter, Rebecca C. Wade and Daria B. Kokh |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1743029640 | ||
| 003 | DE-627 | ||
| 005 | 20230427191008.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 201216s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1021/acs.jcim.9b01185 |2 doi | |
| 035 | |a (DE-627)1743029640 | ||
| 035 | |a (DE-599)KXP1743029640 | ||
| 035 | |a (OCoLC)1341383880 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 32 |2 sdnb | ||
| 100 | 1 | |a Yuan, Jui-Hung |e VerfasserIn |0 (DE-588)1223565262 |0 (DE-627)1743031416 |4 aut | |
| 245 | 1 | 0 | |a Druggability assessment in TRAPP using machine learning approaches |c Jui-Hung Yuan, Sungho Bosco Han, Stefan Richter, Rebecca C. Wade and Daria B. Kokh |
| 264 | 1 | |c 27 February 2020 | |
| 300 | |a 15 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 16.12.2020 | ||
| 520 | |a Accurate protein druggability predictions are important for the selection of drug targets in the early stages of drug discovery. Because of the flexible nature of proteins, the druggability of a binding pocket may vary due to conformational changes. We have therefore developed two statistical models, a logistic regression model (TRAPP-LR) and a convolutional neural network model (TRAPP-CNN), for predicting druggability and how it varies with changes in the spatial and physicochemical properties of a binding pocket. These models are integrated into TRAnsient Pockets in Proteins (TRAPP), a tool for the analysis of binding pocket variations along a protein motion trajectory. The models, which were trained on publicly available and self-augmented datasets, show equivalent or superior performance to existing methods on test sets of protein crystal structures and have sufficient sensitivity to identify potentially druggable protein conformations in trajectories from molecular dynamics simulations. Visualization of the evidence for the decisions of the models in TRAPP facilitates identification of the factors affecting the druggability of protein binding pockets. | ||
| 700 | 1 | |a Han, Sungho Bosco |e VerfasserIn |0 (DE-588)1223565483 |0 (DE-627)1743032145 |4 aut | |
| 700 | 1 | |a Richter, Stefan |e VerfasserIn |0 (DE-588)1131823915 |0 (DE-627)886575346 |0 (DE-576)488514878 |4 aut | |
| 700 | 1 | |a Wade, Rebecca C. |e VerfasserIn |0 (DE-588)102801774X |0 (DE-627)730136000 |0 (DE-576)276591402 |4 aut | |
| 700 | 1 | |a Kokh, Daria B. |e VerfasserIn |0 (DE-588)1150707844 |0 (DE-627)1010913387 |0 (DE-576)497188945 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of chemical information and modeling |d Washington, DC : American Chemical Society, 2005 |g 60(2020), 3, Seite 1685-1699 |h Online-Ressource |w (DE-627)302467327 |w (DE-600)1491237-5 |w (DE-576)090855124 |x 1549-960X |7 nnas |a Druggability assessment in TRAPP using machine learning approaches |
| 773 | 1 | 8 | |g volume:60 |g year:2020 |g number:3 |g pages:1685-1699 |g extent:15 |a Druggability assessment in TRAPP using machine learning approaches |
| 856 | 4 | 0 | |u https://doi.org/10.1021/acs.jcim.9b01185 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20201216 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1150707844 |a Kokh, Daria B. |m 1150707844:Kokh, Daria B. |p 5 |y j | ||
| 998 | |g 102801774X |a Wade, Rebecca C. |m 102801774X:Wade, Rebecca C. |d 140000 |e 140000PW102801774X |k 0/140000/ |p 4 | ||
| 998 | |g 1131823915 |a Richter, Stefan |m 1131823915:Richter, Stefan |d 700000 |d 706000 |e 700000PR1131823915 |e 706000PR1131823915 |k 0/700000/ |k 1/700000/706000/ |p 3 | ||
| 998 | |g 1223565483 |a Han, Sungho Bosco |m 1223565483:Han, Sungho Bosco |p 2 | ||
| 998 | |g 1223565262 |a Yuan, Jui-Hung |m 1223565262:Yuan, Jui-Hung |p 1 |x j | ||
| 999 | |a KXP-PPN1743029640 |e 3826207416 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"physDesc":[{"extent":"15 S."}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Druggability assessment in TRAPP using machine learning approaches","title_sort":"Druggability assessment in TRAPP using machine learning approaches"}],"person":[{"display":"Yuan, Jui-Hung","family":"Yuan","role":"aut","given":"Jui-Hung"},{"family":"Han","role":"aut","given":"Sungho Bosco","display":"Han, Sungho Bosco"},{"display":"Richter, Stefan","family":"Richter","role":"aut","given":"Stefan"},{"family":"Wade","role":"aut","given":"Rebecca C.","display":"Wade, Rebecca C."},{"given":"Daria B.","role":"aut","family":"Kokh","display":"Kokh, Daria B."}],"recId":"1743029640","name":{"displayForm":["Jui-Hung Yuan, Sungho Bosco Han, Stefan Richter, Rebecca C. Wade and Daria B. Kokh"]},"origin":[{"dateIssuedDisp":"27 February 2020","dateIssuedKey":"2020"}],"id":{"doi":["10.1021/acs.jcim.9b01185"],"eki":["1743029640"]},"note":["Gesehen am 16.12.2020"],"relHost":[{"pubHistory":["Volume 45, issue 1 (January 2005)-"],"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 03.05.2023"],"title":[{"title_sort":"Journal of chemical information and modeling","title":"Journal of chemical information and modeling"}],"disp":"Druggability assessment in TRAPP using machine learning approachesJournal of chemical information and modeling","recId":"302467327","part":{"extent":"15","text":"60(2020), 3, Seite 1685-1699","volume":"60","pages":"1685-1699","issue":"3","year":"2020"},"id":{"issn":["1549-960X"],"zdb":["1491237-5"],"eki":["302467327"]},"origin":[{"publisher":"American Chemical Society","dateIssuedDisp":"[2005]-","publisherPlace":"Washington, DC"}]}]} | ||
| SRT | |a YUANJUIHUNDRUGGABILI2720 | ||