Druggability assessment in TRAPP using machine learning approaches

Accurate protein druggability predictions are important for the selection of drug targets in the early stages of drug discovery. Because of the flexible nature of proteins, the druggability of a binding pocket may vary due to conformational changes. We have therefore developed two statistical models...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuan, Jui-Hung (Author) , Han, Sungho Bosco (Author) , Richter, Stefan (Author) , Wade, Rebecca C. (Author) , Kokh, Daria B. (Author)
Format: Article (Journal)
Language:English
Published: 27 February 2020
In: Journal of chemical information and modeling
Year: 2020, Volume: 60, Issue: 3, Pages: 1685-1699
ISSN:1549-960X
DOI:10.1021/acs.jcim.9b01185
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1021/acs.jcim.9b01185
Get full text
Author Notes:Jui-Hung Yuan, Sungho Bosco Han, Stefan Richter, Rebecca C. Wade and Daria B. Kokh

MARC

LEADER 00000caa a2200000 c 4500
001 1743029640
003 DE-627
005 20230427191008.0
007 cr uuu---uuuuu
008 201216s2020 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.jcim.9b01185  |2 doi 
035 |a (DE-627)1743029640 
035 |a (DE-599)KXP1743029640 
035 |a (OCoLC)1341383880 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 32  |2 sdnb 
100 1 |a Yuan, Jui-Hung  |e VerfasserIn  |0 (DE-588)1223565262  |0 (DE-627)1743031416  |4 aut 
245 1 0 |a Druggability assessment in TRAPP using machine learning approaches  |c Jui-Hung Yuan, Sungho Bosco Han, Stefan Richter, Rebecca C. Wade and Daria B. Kokh 
264 1 |c 27 February 2020 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 16.12.2020 
520 |a Accurate protein druggability predictions are important for the selection of drug targets in the early stages of drug discovery. Because of the flexible nature of proteins, the druggability of a binding pocket may vary due to conformational changes. We have therefore developed two statistical models, a logistic regression model (TRAPP-LR) and a convolutional neural network model (TRAPP-CNN), for predicting druggability and how it varies with changes in the spatial and physicochemical properties of a binding pocket. These models are integrated into TRAnsient Pockets in Proteins (TRAPP), a tool for the analysis of binding pocket variations along a protein motion trajectory. The models, which were trained on publicly available and self-augmented datasets, show equivalent or superior performance to existing methods on test sets of protein crystal structures and have sufficient sensitivity to identify potentially druggable protein conformations in trajectories from molecular dynamics simulations. Visualization of the evidence for the decisions of the models in TRAPP facilitates identification of the factors affecting the druggability of protein binding pockets. 
700 1 |a Han, Sungho Bosco  |e VerfasserIn  |0 (DE-588)1223565483  |0 (DE-627)1743032145  |4 aut 
700 1 |a Richter, Stefan  |e VerfasserIn  |0 (DE-588)1131823915  |0 (DE-627)886575346  |0 (DE-576)488514878  |4 aut 
700 1 |a Wade, Rebecca C.  |e VerfasserIn  |0 (DE-588)102801774X  |0 (DE-627)730136000  |0 (DE-576)276591402  |4 aut 
700 1 |a Kokh, Daria B.  |e VerfasserIn  |0 (DE-588)1150707844  |0 (DE-627)1010913387  |0 (DE-576)497188945  |4 aut 
773 0 8 |i Enthalten in  |t Journal of chemical information and modeling  |d Washington, DC : American Chemical Society, 2005  |g 60(2020), 3, Seite 1685-1699  |h Online-Ressource  |w (DE-627)302467327  |w (DE-600)1491237-5  |w (DE-576)090855124  |x 1549-960X  |7 nnas  |a Druggability assessment in TRAPP using machine learning approaches 
773 1 8 |g volume:60  |g year:2020  |g number:3  |g pages:1685-1699  |g extent:15  |a Druggability assessment in TRAPP using machine learning approaches 
856 4 0 |u https://doi.org/10.1021/acs.jcim.9b01185  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20201216 
993 |a Article 
994 |a 2020 
998 |g 1150707844  |a Kokh, Daria B.  |m 1150707844:Kokh, Daria B.  |p 5  |y j 
998 |g 102801774X  |a Wade, Rebecca C.  |m 102801774X:Wade, Rebecca C.  |d 140000  |e 140000PW102801774X  |k 0/140000/  |p 4 
998 |g 1131823915  |a Richter, Stefan  |m 1131823915:Richter, Stefan  |d 700000  |d 706000  |e 700000PR1131823915  |e 706000PR1131823915  |k 0/700000/  |k 1/700000/706000/  |p 3 
998 |g 1223565483  |a Han, Sungho Bosco  |m 1223565483:Han, Sungho Bosco  |p 2 
998 |g 1223565262  |a Yuan, Jui-Hung  |m 1223565262:Yuan, Jui-Hung  |p 1  |x j 
999 |a KXP-PPN1743029640  |e 3826207416 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"physDesc":[{"extent":"15 S."}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Druggability assessment in TRAPP using machine learning approaches","title_sort":"Druggability assessment in TRAPP using machine learning approaches"}],"person":[{"display":"Yuan, Jui-Hung","family":"Yuan","role":"aut","given":"Jui-Hung"},{"family":"Han","role":"aut","given":"Sungho Bosco","display":"Han, Sungho Bosco"},{"display":"Richter, Stefan","family":"Richter","role":"aut","given":"Stefan"},{"family":"Wade","role":"aut","given":"Rebecca C.","display":"Wade, Rebecca C."},{"given":"Daria B.","role":"aut","family":"Kokh","display":"Kokh, Daria B."}],"recId":"1743029640","name":{"displayForm":["Jui-Hung Yuan, Sungho Bosco Han, Stefan Richter, Rebecca C. Wade and Daria B. Kokh"]},"origin":[{"dateIssuedDisp":"27 February 2020","dateIssuedKey":"2020"}],"id":{"doi":["10.1021/acs.jcim.9b01185"],"eki":["1743029640"]},"note":["Gesehen am 16.12.2020"],"relHost":[{"pubHistory":["Volume 45, issue 1 (January 2005)-"],"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 03.05.2023"],"title":[{"title_sort":"Journal of chemical information and modeling","title":"Journal of chemical information and modeling"}],"disp":"Druggability assessment in TRAPP using machine learning approachesJournal of chemical information and modeling","recId":"302467327","part":{"extent":"15","text":"60(2020), 3, Seite 1685-1699","volume":"60","pages":"1685-1699","issue":"3","year":"2020"},"id":{"issn":["1549-960X"],"zdb":["1491237-5"],"eki":["302467327"]},"origin":[{"publisher":"American Chemical Society","dateIssuedDisp":"[2005]-","publisherPlace":"Washington, DC"}]}]} 
SRT |a YUANJUIHUNDRUGGABILI2720