Iwasawa theory for one-parameter families of motives
In [A formulation of conjectures on p-adic zeta functions in non-commutative Iwasawa theory, in Proc. St. Petersburg Mathematical Society, Vol. 12, American Mathematical Society Translations, Series 2, Vol. 219 (American Mathematical Society, Providence, RI, 2006), pp. 1-85] Fukaya and Kato presente...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2013
|
| In: |
International journal of number theory
Year: 2012, Jahrgang: 09, Heft: 02, Pages: 257-319 |
| ISSN: | 1793-0421 |
| DOI: | 10.1142/S1793042112501357 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1142/S1793042112501357 Verlag, lizenzpflichtig, Volltext: https://www.worldscientific.com/doi/abs/10.1142/S1793042112501357 |
| Verfasserangaben: | Peter Barth |
| Zusammenfassung: | In [A formulation of conjectures on p-adic zeta functions in non-commutative Iwasawa theory, in Proc. St. Petersburg Mathematical Society, Vol. 12, American Mathematical Society Translations, Series 2, Vol. 219 (American Mathematical Society, Providence, RI, 2006), pp. 1-85] Fukaya and Kato presented equivariant Tamagawa number conjectures that implied a very general (non-commutative) Iwasawa main conjecture for rather general motives. In this article we apply their methods to the case of one-parameter families of motives to derive a main conjecture for such families. On our way there we get some unconditional results on the variation of the (algebraic) λ- and μ-invariant. We focus on the results dealing with Selmer complexes instead of the more classical notion of Selmer groups. However, where possible we give the connection to the classical notions. |
|---|---|
| Beschreibung: | Gesehen am 21.12.2020 First published: 30 November 2012 |
| Beschreibung: | Online Resource |
| ISSN: | 1793-0421 |
| DOI: | 10.1142/S1793042112501357 |