Iwasawa theory for one-parameter families of motives

In [A formulation of conjectures on p-adic zeta functions in non-commutative Iwasawa theory, in Proc. St. Petersburg Mathematical Society, Vol. 12, American Mathematical Society Translations, Series 2, Vol. 219 (American Mathematical Society, Providence, RI, 2006), pp. 1-85] Fukaya and Kato presente...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Barth, Peter (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2013
In: International journal of number theory
Year: 2012, Jahrgang: 09, Heft: 02, Pages: 257-319
ISSN:1793-0421
DOI:10.1142/S1793042112501357
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1142/S1793042112501357
Verlag, lizenzpflichtig, Volltext: https://www.worldscientific.com/doi/abs/10.1142/S1793042112501357
Volltext
Verfasserangaben:Peter Barth
Beschreibung
Zusammenfassung:In [A formulation of conjectures on p-adic zeta functions in non-commutative Iwasawa theory, in Proc. St. Petersburg Mathematical Society, Vol. 12, American Mathematical Society Translations, Series 2, Vol. 219 (American Mathematical Society, Providence, RI, 2006), pp. 1-85] Fukaya and Kato presented equivariant Tamagawa number conjectures that implied a very general (non-commutative) Iwasawa main conjecture for rather general motives. In this article we apply their methods to the case of one-parameter families of motives to derive a main conjecture for such families. On our way there we get some unconditional results on the variation of the (algebraic) λ- and μ-invariant. We focus on the results dealing with Selmer complexes instead of the more classical notion of Selmer groups. However, where possible we give the connection to the classical notions.
Beschreibung:Gesehen am 21.12.2020
First published: 30 November 2012
Beschreibung:Online Resource
ISSN:1793-0421
DOI:10.1142/S1793042112501357