Clinical-grade detection of microsatellite instability in colorectal tumors by deep learning

Background & Aims - Microsatellite instability (MSI) and mismatch-repair deficiency (dMMR) in colorectal tumors are used to select treatment for patients. Deep learning can detect MSI and dMMR in tumor samples on routine histology slides faster and less expensively than molecular assays. However...

Full description

Saved in:
Bibliographic Details
Main Authors: Echle, Amelie (Author) , Grabsch, Heike Irmgard (Author) , Quirke, Philip (Author) , van den Brandt, Piet A. (Author) , West, Nicholas P. (Author) , Hutchins, Gordon G. A. (Author) , Heij, Lara R. (Author) , Tan, Xiuxiang (Author) , Richman, Susan D. (Author) , Krause, Jeremias (Author) , Alwers, Elizabeth (Author) , Jenniskens, Josien (Author) , Offermans, Kelly (Author) , Gray, Richard (Author) , Brenner, Hermann (Author) , Chang-Claude, Jenny (Author) , Trautwein, Christian (Author) , Pearson, Alexander T. (Author) , Boor, Peter (Author) , Luedde, Tom (Author) , Gaisa, Nadine Therese (Author) , Hoffmeister, Michael (Author) , Kather, Jakob Nikolas (Author)
Format: Article (Journal)
Language:English
Published: 17 June 2020
In: Gastroenterology
Year: 2020, Volume: 159, Issue: 4, Pages: 1406-1416.e11
ISSN:1528-0012
DOI:10.1053/j.gastro.2020.06.021
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1053/j.gastro.2020.06.021
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0016508520348186
Get full text
Author Notes:Amelie Echle, Heike Irmgard Grabsch, Philip Quirke, Piet A. van den Brandt, Nicholas P. West, Gordon G. A. Hutchins, Lara R. Heij, Xiuxiang Tan, Susan D. Richman, Jeremias Krause, Elizabeth Alwers, Josien Jenniskens, Kelly Offermans, Richard Gray, Hermann Brenner, Jenny Chang-Claude, Christian Trautwein, Alexander T. Pearson, Peter Boor, Tom Luedde, Nadine Therese Gaisa, Michael Hoffmeister, and Jakob Nikolas Kather

MARC

LEADER 00000caa a2200000 c 4500
001 1743775520
003 DE-627
005 20240408193243.0
007 cr uuu---uuuuu
008 210104s2020 xx |||||o 00| ||eng c
024 7 |a 10.1053/j.gastro.2020.06.021  |2 doi 
035 |a (DE-627)1743775520 
035 |a (DE-599)KXP1743775520 
035 |a (OCoLC)1341383955 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Echle, Amelie  |d 1996-  |e VerfasserIn  |0 (DE-588)1224421035  |0 (DE-627)174377656X  |4 aut 
245 1 0 |a Clinical-grade detection of microsatellite instability in colorectal tumors by deep learning  |c Amelie Echle, Heike Irmgard Grabsch, Philip Quirke, Piet A. van den Brandt, Nicholas P. West, Gordon G. A. Hutchins, Lara R. Heij, Xiuxiang Tan, Susan D. Richman, Jeremias Krause, Elizabeth Alwers, Josien Jenniskens, Kelly Offermans, Richard Gray, Hermann Brenner, Jenny Chang-Claude, Christian Trautwein, Alexander T. Pearson, Peter Boor, Tom Luedde, Nadine Therese Gaisa, Michael Hoffmeister, and Jakob Nikolas Kather 
264 1 |c 17 June 2020 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 04.01.2021 
520 |a Background & Aims - Microsatellite instability (MSI) and mismatch-repair deficiency (dMMR) in colorectal tumors are used to select treatment for patients. Deep learning can detect MSI and dMMR in tumor samples on routine histology slides faster and less expensively than molecular assays. However, clinical application of this technology requires high performance and multisite validation, which have not yet been performed. - Methods - We collected H&E-stained slides and findings from molecular analyses for MSI and dMMR from 8836 colorectal tumors (of all stages) included in the MSIDETECT consortium study, from Germany, the Netherlands, the United Kingdom, and the United States. Specimens with dMMR were identified by immunohistochemistry analyses of tissue microarrays for loss of MLH1, MSH2, MSH6, and/or PMS2. Specimens with MSI were identified by genetic analyses. We trained a deep-learning detector to identify samples with MSI from these slides; performance was assessed by cross-validation (N = 6406 specimens) and validated in an external cohort (n = 771 specimens). Prespecified endpoints were area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC). - Results - The deep-learning detector identified specimens with dMMR or MSI with a mean AUROC curve of 0.92 (lower bound, 0.91; upper bound, 0.93) and an AUPRC of 0.63 (range, 0.59-0.65), or 67% specificity and 95% sensitivity, in the cross-validation development cohort. In the validation cohort, the classifier identified samples with dMMR with an AUROC of 0.95 (range, 0.92-0.96) without image preprocessing and an AUROC of 0.96 (range, 0.93-0.98) after color normalization. - Conclusions - We developed a deep-learning system that detects colorectal cancer specimens with dMMR or MSI using H&E-stained slides; it detected tissues with dMMR with an AUROC of 0.96 in a large, international validation cohort. This system might be used for high-throughput, low-cost evaluation of colorectal tissue specimens. 
650 4 |a biomarker 
650 4 |a cancer immunotherapy 
650 4 |a Lynch syndrome 
650 4 |a mutation 
700 1 |a Grabsch, Heike Irmgard  |e VerfasserIn  |4 aut 
700 1 |a Quirke, Philip  |e VerfasserIn  |4 aut 
700 1 |a van den Brandt, Piet A.  |e VerfasserIn  |4 aut 
700 1 |a West, Nicholas P.  |e VerfasserIn  |4 aut 
700 1 |a Hutchins, Gordon G. A.  |e VerfasserIn  |4 aut 
700 1 |a Heij, Lara R.  |e VerfasserIn  |4 aut 
700 1 |a Tan, Xiuxiang  |e VerfasserIn  |4 aut 
700 1 |a Richman, Susan D.  |e VerfasserIn  |4 aut 
700 1 |a Krause, Jeremias  |e VerfasserIn  |4 aut 
700 1 |a Alwers, Elizabeth  |e VerfasserIn  |0 (DE-588)1181909058  |0 (DE-627)1662464614  |4 aut 
700 1 |a Jenniskens, Josien  |e VerfasserIn  |4 aut 
700 1 |a Offermans, Kelly  |e VerfasserIn  |4 aut 
700 1 |a Gray, Richard  |e VerfasserIn  |4 aut 
700 1 |a Brenner, Hermann  |e VerfasserIn  |0 (DE-588)1020516445  |0 (DE-627)691247005  |0 (DE-576)360642136  |4 aut 
700 1 |a Chang-Claude, Jenny  |e VerfasserIn  |0 (DE-588)1049304993  |0 (DE-627)781626188  |0 (DE-576)168344475  |4 aut 
700 1 |a Trautwein, Christian  |e VerfasserIn  |4 aut 
700 1 |a Pearson, Alexander T.  |e VerfasserIn  |4 aut 
700 1 |a Boor, Peter  |e VerfasserIn  |4 aut 
700 1 |a Luedde, Tom  |e VerfasserIn  |4 aut 
700 1 |a Gaisa, Nadine Therese  |e VerfasserIn  |4 aut 
700 1 |a Hoffmeister, Michael  |d 1973-  |e VerfasserIn  |0 (DE-588)134103726  |0 (DE-627)560880820  |0 (DE-576)277089565  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
773 0 8 |i Enthalten in  |t Gastroenterology  |d New York, NY : Elsevier, 1949  |g 159(2020), 4, Seite 1406-1416.e11  |h Online-Ressource  |w (DE-627)270937293  |w (DE-600)1478699-0  |w (DE-576)078590221  |x 1528-0012  |7 nnas  |a Clinical-grade detection of microsatellite instability in colorectal tumors by deep learning 
773 1 8 |g volume:159  |g year:2020  |g number:4  |g pages:1406-1416.e11  |g extent:22  |a Clinical-grade detection of microsatellite instability in colorectal tumors by deep learning 
856 4 0 |u https://doi.org/10.1053/j.gastro.2020.06.021  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0016508520348186  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210104 
993 |a Article 
994 |a 2020 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 23  |y j 
998 |g 134103726  |a Hoffmeister, Michael  |m 134103726:Hoffmeister, Michael  |d 50000  |e 50000PH134103726  |k 0/50000/  |p 22 
998 |g 1049304993  |a Chang-Claude, Jenny  |m 1049304993:Chang-Claude, Jenny  |d 50000  |e 50000PC1049304993  |k 0/50000/  |p 16 
998 |g 1020516445  |a Brenner, Hermann  |m 1020516445:Brenner, Hermann  |d 850000  |d 851600  |d 50000  |e 850000PB1020516445  |e 851600PB1020516445  |e 50000PB1020516445  |k 0/850000/  |k 1/850000/851600/  |k 0/50000/  |p 15 
998 |g 1181909058  |a Alwers, Elizabeth  |m 1181909058:Alwers, Elizabeth  |d 50000  |e 50000PA1181909058  |k 0/50000/  |p 11 
999 |a KXP-PPN1743775520  |e 3829741014 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Amelie Echle, Heike Irmgard Grabsch, Philip Quirke, Piet A. van den Brandt, Nicholas P. West, Gordon G. A. Hutchins, Lara R. Heij, Xiuxiang Tan, Susan D. Richman, Jeremias Krause, Elizabeth Alwers, Josien Jenniskens, Kelly Offermans, Richard Gray, Hermann Brenner, Jenny Chang-Claude, Christian Trautwein, Alexander T. Pearson, Peter Boor, Tom Luedde, Nadine Therese Gaisa, Michael Hoffmeister, and Jakob Nikolas Kather"]},"id":{"eki":["1743775520"],"doi":["10.1053/j.gastro.2020.06.021"]},"recId":"1743775520","physDesc":[{"extent":"22 S."}],"origin":[{"dateIssuedDisp":"17 June 2020","dateIssuedKey":"2020"}],"person":[{"display":"Echle, Amelie","given":"Amelie","role":"aut","family":"Echle"},{"display":"Grabsch, Heike Irmgard","given":"Heike Irmgard","role":"aut","family":"Grabsch"},{"given":"Philip","role":"aut","family":"Quirke","display":"Quirke, Philip"},{"family":"van den Brandt","role":"aut","given":"Piet A.","display":"van den Brandt, Piet A."},{"given":"Nicholas P.","role":"aut","family":"West","display":"West, Nicholas P."},{"display":"Hutchins, Gordon G. A.","role":"aut","given":"Gordon G. A.","family":"Hutchins"},{"display":"Heij, Lara R.","family":"Heij","role":"aut","given":"Lara R."},{"display":"Tan, Xiuxiang","given":"Xiuxiang","role":"aut","family":"Tan"},{"display":"Richman, Susan D.","given":"Susan D.","role":"aut","family":"Richman"},{"display":"Krause, Jeremias","family":"Krause","given":"Jeremias","role":"aut"},{"family":"Alwers","role":"aut","given":"Elizabeth","display":"Alwers, Elizabeth"},{"given":"Josien","role":"aut","family":"Jenniskens","display":"Jenniskens, Josien"},{"family":"Offermans","given":"Kelly","role":"aut","display":"Offermans, Kelly"},{"role":"aut","given":"Richard","family":"Gray","display":"Gray, Richard"},{"given":"Hermann","role":"aut","family":"Brenner","display":"Brenner, Hermann"},{"display":"Chang-Claude, Jenny","given":"Jenny","role":"aut","family":"Chang-Claude"},{"role":"aut","given":"Christian","family":"Trautwein","display":"Trautwein, Christian"},{"display":"Pearson, Alexander T.","given":"Alexander T.","role":"aut","family":"Pearson"},{"display":"Boor, Peter","family":"Boor","given":"Peter","role":"aut"},{"display":"Luedde, Tom","role":"aut","given":"Tom","family":"Luedde"},{"role":"aut","given":"Nadine Therese","family":"Gaisa","display":"Gaisa, Nadine Therese"},{"family":"Hoffmeister","given":"Michael","role":"aut","display":"Hoffmeister, Michael"},{"family":"Kather","role":"aut","given":"Jakob Nikolas","display":"Kather, Jakob Nikolas"}],"relHost":[{"pubHistory":["Nachgewiesen 12.1949 -"],"corporate":[{"display":"American Gastroenterological Association","role":"isb"}],"id":{"zdb":["1478699-0"],"eki":["270937293"],"issn":["1528-0012"]},"part":{"volume":"159","year":"2020","extent":"22","text":"159(2020), 4, Seite 1406-1416.e11","issue":"4","pages":"1406-1416.e11"},"recId":"270937293","physDesc":[{"extent":"Online-Ressource"}],"disp":"Clinical-grade detection of microsatellite instability in colorectal tumors by deep learningGastroenterology","origin":[{"dateIssuedDisp":"1949-","dateIssuedKey":"1949","publisherPlace":"New York, NY ; Baltimore, Md. ; Philadelphia, Pa. [u.a.]","publisher":"Elsevier ; Williams & Wilkins ; Saunders"}],"title":[{"title_sort":"Gastroenterology","title":"Gastroenterology","subtitle":"official publication of the American Gastroenterological Association"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"note":["Gesehen am 21.07.25"]}],"title":[{"title_sort":"Clinical-grade detection of microsatellite instability in colorectal tumors by deep learning","title":"Clinical-grade detection of microsatellite instability in colorectal tumors by deep learning"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"note":["Gesehen am 04.01.2021"]} 
SRT |a ECHLEAMELICLINICALGR1720