Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures

Nanoantennas confine electromagnetic fields at visible and infrared wavelengths to volumes of only a few cubic nanometres. Assessing their near-field distribution offers fundamental insight into light-matter coupling and is of special interest for applications such as radiation engineering, attomola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Drégely, Daniel (VerfasserIn) , Neubrech, Frank (VerfasserIn) , Duan, Huigao (VerfasserIn) , Vogelgesang, Ralf (VerfasserIn) , Giessen, Harald (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 29 July 2013
In: Nature Communications
Year: 2013, Jahrgang: 4
ISSN:2041-1723
DOI:10.1038/ncomms3237
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/ncomms3237
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/ncomms3237
Volltext
Verfasserangaben:Daniel Dregely, Frank Neubrech, Huigao Duan, Ralf Vogelgesang and Harald Giessen
Beschreibung
Zusammenfassung:Nanoantennas confine electromagnetic fields at visible and infrared wavelengths to volumes of only a few cubic nanometres. Assessing their near-field distribution offers fundamental insight into light-matter coupling and is of special interest for applications such as radiation engineering, attomolar sensing and nonlinear optics. Most experimental approaches to measure near-fields employ either diffraction-limited far-field methods or intricate near-field scanning techniques. Here, using diffraction-unlimited far-field spectroscopy in the infrared, we directly map the intensity of the electric field close to plasmonic nanoantennas. We place a patch of probe molecules with 10 nm accuracy at different locations in the near-field of a resonant antenna and extract the molecular vibrational excitation. We map the field intensity along a dipole antenna and gap-type antennas. Moreover, this method is able to assess the near-field intensity of complex buried plasmonic structures. We demonstrate this by measuring for the first time the near-field intensity of a three-dimensional plasmonic electromagnetically induced transparency structure.
Beschreibung:Gesehen am 04.01.2021
Beschreibung:Online Resource
ISSN:2041-1723
DOI:10.1038/ncomms3237