Nonlinear dipole inversion (NDI) enables robust quantitative susceptibility mapping (QSM)

High-quality Quantitative Susceptibility Mapping (QSM) with Nonlinear Dipole Inversion (NDI) is developed with pre-determined regularization while matching the image quality of state-of-the-art reconstruction techniques and avoiding over-smoothing that these techniques often suffer from. NDI is flex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Polak, Daniel (VerfasserIn) , Chatnuntawech, Itthi (VerfasserIn) , Yoon, Jaeyeon (VerfasserIn) , Iyer, Siddharth Srinivasan (VerfasserIn) , Milovic, Carlos (VerfasserIn) , Lee, Jongho (VerfasserIn) , Bachert, Peter (VerfasserIn) , Adalsteinsson, Elfar (VerfasserIn) , Setsompop, Kawin (VerfasserIn) , Bilgic, Berkin (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 February 2020
In: NMR in biomedicine
Year: 2020, Jahrgang: 33, Heft: 12
ISSN:1099-1492
DOI:https://doi.org/10.1002/nbm.4271
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/https://doi.org/10.1002/nbm.4271
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/nbm.4271
Volltext
Verfasserangaben:Daniel Polak, Itthi Chatnuntawech, Jaeyeon Yoon, Siddharth Srinivasan Iyer, Carlos Milovic, Jongho Lee, Peter Bachert, Elfar Adalsteinsson, Kawin Setsompop, Berkin Bilgic
Beschreibung
Zusammenfassung:High-quality Quantitative Susceptibility Mapping (QSM) with Nonlinear Dipole Inversion (NDI) is developed with pre-determined regularization while matching the image quality of state-of-the-art reconstruction techniques and avoiding over-smoothing that these techniques often suffer from. NDI is flexible enough to allow for reconstruction from an arbitrary number of head orientations and outperforms COSMOS even when using as few as 1-direction data. This is made possible by a nonlinear forward-model that uses the magnitude as an effective prior, for which we derived a simple gradient descent update rule. We synergistically combine this physics-model with a Variational Network (VN) to leverage the power of deep learning in the VaNDI algorithm. This technique adopts the simple gradient descent rule from NDI and learns the network parameters during training, hence requires no additional parameter tuning. Further, we evaluate NDI at 7 T using highly accelerated Wave-CAIPI acquisitions at 0.5 mm isotropic resolution and demonstrate high-quality QSM from as few as 2-direction data.
Beschreibung:Gesehen am 07.01.2021
Beschreibung:Online Resource
ISSN:1099-1492
DOI:https://doi.org/10.1002/nbm.4271