The solar gravitational redshift from HARPS-LFC Moon spectra: a test of the general theory of relativity

<i>Context.<i/> The general theory of relativity predicts the redshift of spectral lines in the solar photosphere as a consequence of the gravitational potential of the Sun. This effect can be measured from a solar disk-integrated flux spectrum of the Sun’s reflected light on Solar Syste...

Full description

Saved in:
Bibliographic Details
Main Authors: González Hernández, Jonay I. (Author) , Rebolo, R. (Author) , Pasquini, L. (Author) , Curto, G. Lo (Author) , Molaro, P. (Author) , Caffau, E. (Author) , Ludwig, Hans-Günter (Author) , Steffen, M. (Author) , Esposito, M. (Author) , Mascareño, A. Suárez (Author) , Toledo-Padrón, B. (Author) , Probst, R. A. (Author) , Hänsch, T. W. (Author) , Holzwarth, R. (Author) , Manescau, A. (Author) , Steinmetz, T. (Author) , Udem, Th (Author) , Wilken, T. (Author)
Format: Article (Journal)
Language:English
Published: 17 November 2020
In: Astronomy and astrophysics
Year: 2020, Volume: 643
ISSN:1432-0746
DOI:10.1051/0004-6361/202038937
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1051/0004-6361/202038937
Verlag, lizenzpflichtig, Volltext: https://www.aanda.org/articles/aa/abs/2020/11/aa38937-20/aa38937-20.html
Get full text
Author Notes:J. I. González Hernández, R. Rebolo, L. Pasquini, G. Lo Curto, P. Molaro, E. Caffau, H.-G. Ludwig, M. Steffen, M. Esposito, A. Suárez Mascareño, B. Toledo-Padrón, R.A. Probst, T.W. Hänsch, R. Holzwarth, A. Manescau, T. Steinmetz, Th. Udem, and T. Wilken

MARC

LEADER 00000caa a2200000 c 4500
001 1744159653
003 DE-627
005 20220819064617.0
007 cr uuu---uuuuu
008 210107s2020 xx |||||o 00| ||eng c
024 7 |a 10.1051/0004-6361/202038937  |2 doi 
035 |a (DE-627)1744159653 
035 |a (DE-599)KXP1744159653 
035 |a (OCoLC)1341384442 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a González Hernández, Jonay I.  |e VerfasserIn  |0 (DE-627)1453833994  |0 (DE-576)38383399X  |4 aut 
245 1 4 |a The solar gravitational redshift from HARPS-LFC Moon spectra  |b a test of the general theory of relativity  |c J. I. González Hernández, R. Rebolo, L. Pasquini, G. Lo Curto, P. Molaro, E. Caffau, H.-G. Ludwig, M. Steffen, M. Esposito, A. Suárez Mascareño, B. Toledo-Padrón, R.A. Probst, T.W. Hänsch, R. Holzwarth, A. Manescau, T. Steinmetz, Th. Udem, and T. Wilken 
264 1 |c 17 November 2020 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.01.2021 
520 |a <i>Context.<i/> The general theory of relativity predicts the redshift of spectral lines in the solar photosphere as a consequence of the gravitational potential of the Sun. This effect can be measured from a solar disk-integrated flux spectrum of the Sun’s reflected light on Solar System bodies.<i>Aims.<i/> The laser frequency comb (LFC) calibration system attached to the HARPS spectrograph offers the possibility of performing an accurate measurement of the solar gravitational redshift (GRS) by observing the Moon or other Solar System bodies. Here, we analyse the line shift observed in Fe absorption lines from five high-quality HARPS-LFC spectra of the Moon.<i>Methods.<i/> We selected an initial sample of 326 photospheric Fe lines in the spectral range between 476-585 nm and measured their line positions and equivalent widths (EWs). Accurate line shifts were derived from the wavelength position of the core of the lines compared with the laboratory wavelengths of Fe lines. We also used a CO<sup>5<sup/>BOLD 3D hydrodynamical model atmosphere of the Sun to compute 3D synthetic line profiles of a subsample of about 200 spectral Fe lines centred at their laboratory wavelengths. We fit the observed relatively weak spectral Fe lines (with EW< 180 mÅ) with the 3D synthetic profiles.<i>Results.<i/> Convective motions in the solar photosphere do not affect the line cores of Fe lines stronger than about ∼150 mÅ. In our sample, only 15 Fe I lines have EWs in the range 150< EW(mÅ) < 550, providing a measurement of the solar GRS at 639 ± 14 m s<sup>−1<sup/>, which is consistent with the expected theoretical value on Earth of ∼633.1 m s<sup>−1<sup/>. A final sample of about 97 weak Fe lines with EW < 180 mÅ allows us to derive a mean global line shift of 638 ± 6 m s<sup>−1<sup/>, which is in agreement with the theoretical solar GRS.<i>Conclusions.<i/> These are the most accurate measurements of the solar GRS obtained thus far. Ultrastable spectrographs calibrated with the LFC over a larger spectral range, such as HARPS or ESPRESSO, together with a further improvement on the laboratory wavelengths, could provide a more robust measurement of the solar GRS and further testing of 3D hydrodynamical models. 
700 1 |a Rebolo, R.  |e VerfasserIn  |4 aut 
700 1 |a Pasquini, L.  |e VerfasserIn  |4 aut 
700 1 |a Curto, G. Lo  |e VerfasserIn  |4 aut 
700 1 |a Molaro, P.  |e VerfasserIn  |4 aut 
700 1 |a Caffau, E.  |e VerfasserIn  |4 aut 
700 1 |a Ludwig, Hans-Günter  |d 1962-  |e VerfasserIn  |0 (DE-588)120980568  |0 (DE-627)705135152  |0 (DE-576)292479476  |4 aut 
700 1 |a Steffen, M.  |e VerfasserIn  |4 aut 
700 1 |a Esposito, M.  |e VerfasserIn  |4 aut 
700 1 |a Mascareño, A. Suárez  |e VerfasserIn  |4 aut 
700 1 |a Toledo-Padrón, B.  |e VerfasserIn  |4 aut 
700 1 |a Probst, R. A.  |e VerfasserIn  |4 aut 
700 1 |a Hänsch, T. W.  |e VerfasserIn  |4 aut 
700 1 |a Holzwarth, R.  |e VerfasserIn  |4 aut 
700 1 |a Manescau, A.  |e VerfasserIn  |4 aut 
700 1 |a Steinmetz, T.  |e VerfasserIn  |4 aut 
700 1 |a Udem, Th  |e VerfasserIn  |4 aut 
700 1 |a Wilken, T.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Astronomy and astrophysics  |d Les Ulis : EDP Sciences, 1969  |g 643(2020) Artikel-Nummer A146, 9 Seiten  |h Online-Ressource  |w (DE-627)253390222  |w (DE-600)1458466-9  |w (DE-576)072283351  |x 1432-0746  |7 nnas  |a The solar gravitational redshift from HARPS-LFC Moon spectra a test of the general theory of relativity 
773 1 8 |g volume:643  |g year:2020  |g extent:9  |a The solar gravitational redshift from HARPS-LFC Moon spectra a test of the general theory of relativity 
856 4 0 |u https://doi.org/10.1051/0004-6361/202038937  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.aanda.org/articles/aa/abs/2020/11/aa38937-20/aa38937-20.html  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210107 
993 |a Article 
994 |a 2020 
998 |g 120980568  |a Ludwig, Hans-Günter  |m 120980568:Ludwig, Hans-Günter  |d 700000  |d 714000  |d 714300  |e 700000PL120980568  |e 714000PL120980568  |e 714300PL120980568  |k 0/700000/  |k 1/700000/714000/  |k 2/700000/714000/714300/  |p 7 
999 |a KXP-PPN1744159653  |e 3831532370 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1744159653","id":{"doi":["10.1051/0004-6361/202038937"],"eki":["1744159653"]},"origin":[{"dateIssuedDisp":"17 November 2020","dateIssuedKey":"2020"}],"name":{"displayForm":["J. I. González Hernández, R. Rebolo, L. Pasquini, G. Lo Curto, P. Molaro, E. Caffau, H.-G. Ludwig, M. Steffen, M. Esposito, A. Suárez Mascareño, B. Toledo-Padrón, R.A. Probst, T.W. Hänsch, R. Holzwarth, A. Manescau, T. Steinmetz, Th. Udem, and T. Wilken"]},"language":["eng"],"note":["Gesehen am 07.01.2021"],"person":[{"display":"González Hernández, Jonay I.","role":"aut","family":"González Hernández","given":"Jonay I."},{"family":"Rebolo","role":"aut","display":"Rebolo, R.","given":"R."},{"role":"aut","family":"Pasquini","display":"Pasquini, L.","given":"L."},{"family":"Curto","role":"aut","display":"Curto, G. Lo","given":"G. Lo"},{"role":"aut","family":"Molaro","display":"Molaro, P.","given":"P."},{"family":"Caffau","role":"aut","display":"Caffau, E.","given":"E."},{"display":"Ludwig, Hans-Günter","role":"aut","family":"Ludwig","given":"Hans-Günter"},{"given":"M.","role":"aut","family":"Steffen","display":"Steffen, M."},{"given":"M.","display":"Esposito, M.","role":"aut","family":"Esposito"},{"display":"Mascareño, A. Suárez","role":"aut","family":"Mascareño","given":"A. Suárez"},{"given":"B.","role":"aut","family":"Toledo-Padrón","display":"Toledo-Padrón, B."},{"display":"Probst, R. A.","role":"aut","family":"Probst","given":"R. A."},{"given":"T. W.","role":"aut","family":"Hänsch","display":"Hänsch, T. W."},{"display":"Holzwarth, R.","family":"Holzwarth","role":"aut","given":"R."},{"display":"Manescau, A.","role":"aut","family":"Manescau","given":"A."},{"given":"T.","role":"aut","family":"Steinmetz","display":"Steinmetz, T."},{"display":"Udem, Th","role":"aut","family":"Udem","given":"Th"},{"role":"aut","family":"Wilken","display":"Wilken, T.","given":"T."}],"relHost":[{"title":[{"title":"Astronomy and astrophysics","subtitle":"an international weekly journal","title_sort":"Astronomy and astrophysics"}],"pubHistory":["1.1969 -"],"note":["Gesehen am 21.06.2024","Erscheint 36mal jährlich in 12 Bänden zu je 3 Ausgaben","Fortsetzung der Druck-Ausgabe"],"titleAlt":[{"title":"Astronomy & astrophysics"},{"title":"a European journal"}],"disp":"The solar gravitational redshift from HARPS-LFC Moon spectra a test of the general theory of relativityAstronomy and astrophysics","origin":[{"publisher":"EDP Sciences ; Springer","publisherPlace":"Les Ulis ; Berlin ; Heidelberg","dateIssuedKey":"1969","dateIssuedDisp":"1969-"}],"corporate":[{"role":"isb","display":"European Southern Observatory"}],"id":{"issn":["1432-0746"],"eki":["253390222"],"zdb":["1458466-9"]},"physDesc":[{"extent":"Online-Ressource"}],"part":{"text":"643(2020) Artikel-Nummer A146, 9 Seiten","year":"2020","volume":"643","extent":"9"},"language":["eng"],"name":{"displayForm":["European Southern Observatory (ESO)"]},"recId":"253390222","type":{"bibl":"periodical","media":"Online-Ressource"}}],"title":[{"title":"The solar gravitational redshift from HARPS-LFC Moon spectra","title_sort":"solar gravitational redshift from HARPS-LFC Moon spectra","subtitle":"a test of the general theory of relativity"}],"physDesc":[{"extent":"9 S."}]} 
SRT |a GONZALEZHESOLARGRAVI1720