Analytical probabilistic modeling of dose-volume histograms

Purpose Radiotherapy, especially with charged particles, is sensitive to executional and preparational uncertainties that propagate to uncertainty in dose and plan quality indicators, for example, dose-volume histograms (DVHs). Current approaches to quantify and mitigate such uncertainties rely on e...

Full description

Saved in:
Bibliographic Details
Main Authors: Wahl, Niklas (Author) , Hennig, Philipp (Author) , Wieser, Hans-Peter (Author) , Bangert, Mark (Author)
Format: Article (Journal)
Language:English
Published: 01 August 2020
In: Medical physics
Year: 2020, Volume: 47, Issue: 10, Pages: 5260-5273
ISSN:2473-4209
DOI:https://doi.org/10.1002/mp.14414
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/https://doi.org/10.1002/mp.14414
Verlag, lizenzpflichtig, Volltext: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.14414
Get full text
Author Notes:Niklas Wahl, Philipp Hennig, Hans-Peter Wieser, Mark Bangert

MARC

LEADER 00000caa a2200000 c 4500
001 1744655715
003 DE-627
005 20230428033103.0
007 cr uuu---uuuuu
008 210114s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/mp.14414  |2 doi 
035 |a (DE-627)1744655715 
035 |a (DE-599)KXP1744655715 
035 |a (OCoLC)1341385128 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Wahl, Niklas  |d 1988-  |e VerfasserIn  |0 (DE-588)107775177X  |0 (DE-627)837441838  |0 (DE-576)445344539  |4 aut 
245 1 0 |a Analytical probabilistic modeling of dose-volume histograms  |c Niklas Wahl, Philipp Hennig, Hans-Peter Wieser, Mark Bangert 
264 1 |c 01 August 2020 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.01.2020 
520 |a Purpose Radiotherapy, especially with charged particles, is sensitive to executional and preparational uncertainties that propagate to uncertainty in dose and plan quality indicators, for example, dose-volume histograms (DVHs). Current approaches to quantify and mitigate such uncertainties rely on explicitly computed error scenarios and are thus subject to statistical uncertainty and limitations regarding the underlying uncertainty model. Here we present an alternative, analytical method to approximate moments, in particular expectation value and (co)variance, of the probability distribution of DVH-points, and evaluate its accuracy on patient data. Methods We use Analytical Probabilistic Modeling (APM) to derive moments of the probability distribution over individual DVH-points based on the probability distribution over dose. By using the computed moments to parameterize distinct probability distributions over DVH-points (here normal or beta distributions), not only the moments but also percentiles, that is, α − DVHs, are computed. The model is subsequently evaluated on three patient cases (intracranial, paraspinal, prostate) in 30- and single-fraction scenarios by assuming the dose to follow a multivariate normal distribution, whose moments are computed in closed-form with APM. The results are compared to a benchmark based on discrete random sampling. Results The evaluation of the new probabilistic model on the three patient cases against a sampling benchmark proves its correctness under perfect assumptions as well as good agreement in realistic conditions. More precisely, ca. 90% of all computed expected DVH-points and their standard deviations agree within 1% volume with their empirical counterpart from sampling computations, for both fractionated and single fraction treatments. When computing α − DVH, the assumption of a beta distribution achieved better agreement with empirical percentiles than the assumption of a normal distribution: While in both cases probabilities locally showed large deviations (up to ±0.2), the respective − DVHs for α=0.05,0.5,0.95 only showed small deviations in respective volume (up to ±5% volume for a normal distribution, and up to 2% for a beta distribution). A previously published model from literature, which was included for comparison, exhibited substantially larger deviations. Conclusions With APM we could derive a mathematically exact description of moments of probability distributions over DVH-points given a probability distribution over dose. The model generalizes previous attempts and performs well for both choices of probability distributions, that is, normal or beta distributions, over DVH-points. 
650 4 |a analytical probabilistic modeling 
650 4 |a dose-volume histograms 
650 4 |a particle therapy 
650 4 |a uncertainty propagation 
650 4 |a uncertainty quantification 
700 1 |a Hennig, Philipp  |e VerfasserIn  |0 (DE-588)1178518078  |0 (DE-627)1049428773  |0 (DE-576)517816415  |4 aut 
700 1 |a Wieser, Hans-Peter  |d 1989-  |e VerfasserIn  |0 (DE-588)1171716508  |0 (DE-627)1040665373  |0 (DE-576)513810579  |4 aut 
700 1 |a Bangert, Mark  |e VerfasserIn  |0 (DE-588)1014143322  |0 (DE-627)70517364X  |0 (DE-576)348353847  |4 aut 
773 0 8 |i Enthalten in  |t Medical physics  |d Hoboken, NJ : Wiley, 1974  |g 47(2020), 10, Seite 5260-5273  |h Online-Ressource  |w (DE-627)265784867  |w (DE-600)1466421-5  |w (DE-576)074891243  |x 2473-4209  |7 nnas  |a Analytical probabilistic modeling of dose-volume histograms 
773 1 8 |g volume:47  |g year:2020  |g number:10  |g pages:5260-5273  |g extent:14  |a Analytical probabilistic modeling of dose-volume histograms 
856 4 0 |u https://doi.org/https://doi.org/10.1002/mp.14414  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.14414  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210114 
993 |a Article 
994 |a 2020 
998 |g 1014143322  |a Bangert, Mark  |m 1014143322:Bangert, Mark  |d 130000  |e 130000PB1014143322  |k 0/130000/  |p 4  |y j 
998 |g 1171716508  |a Wieser, Hans-Peter  |m 1171716508:Wieser, Hans-Peter  |d 50000  |e 50000PW1171716508  |k 0/50000/  |p 3 
998 |g 107775177X  |a Wahl, Niklas  |m 107775177X:Wahl, Niklas  |d 130000  |e 130000PW107775177X  |k 0/130000/  |p 1  |x j 
999 |a KXP-PPN1744655715  |e 3836317354 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"14 S."}],"relHost":[{"title":[{"title_sort":"Medical physics","title":"Medical physics"}],"recId":"265784867","language":["eng"],"disp":"Analytical probabilistic modeling of dose-volume histogramsMedical physics","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 01.08.2025"],"part":{"year":"2020","pages":"5260-5273","issue":"10","volume":"47","text":"47(2020), 10, Seite 5260-5273","extent":"14"},"titleAlt":[{"title":"Medical physics online"}],"pubHistory":["1.1974 -"],"name":{"displayForm":["American Association of Physicists in Medicine ; American Institute of Physics"]},"id":{"zdb":["1466421-5"],"eki":["265784867"],"issn":["2473-4209","1522-8541"]},"origin":[{"publisherPlace":"Hoboken, NJ ; College Park, Md. ; New York, NY","dateIssuedDisp":"1974-","publisher":"Wiley ; AAPM ; [Verlag nicht ermittelbar]","dateIssuedKey":"1974"}],"physDesc":[{"extent":"Online-Ressource"}]}],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"01 August 2020"}],"id":{"doi":["10.1002/mp.14414"],"eki":["1744655715"]},"name":{"displayForm":["Niklas Wahl, Philipp Hennig, Hans-Peter Wieser, Mark Bangert"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 14.01.2020"],"language":["eng"],"recId":"1744655715","title":[{"title_sort":"Analytical probabilistic modeling of dose-volume histograms","title":"Analytical probabilistic modeling of dose-volume histograms"}],"person":[{"roleDisplay":"VerfasserIn","display":"Wahl, Niklas","role":"aut","family":"Wahl","given":"Niklas"},{"display":"Hennig, Philipp","roleDisplay":"VerfasserIn","role":"aut","family":"Hennig","given":"Philipp"},{"given":"Hans-Peter","family":"Wieser","role":"aut","display":"Wieser, Hans-Peter","roleDisplay":"VerfasserIn"},{"given":"Mark","family":"Bangert","role":"aut","display":"Bangert, Mark","roleDisplay":"VerfasserIn"}]} 
SRT |a WAHLNIKLASANALYTICAL0120