The future of digital health with federated learning

Data-driven machine learning (ML) has emerged as a promising approach for building accurate and robust statistical models from medical data, which is collected in huge volumes by modern healthcare systems. Existing medical data is not fully exploited by ML primarily because it sits in data silos and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rieke, Nicola (VerfasserIn) , Maier-Hein, Klaus H. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 14 September 2020
In: npj digital medicine
Year: 2020, Jahrgang: 3, Heft: 1
ISSN:2398-6352
DOI:10.1038/s41746-020-00323-1
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41746-020-00323-1
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41746-020-00323-1
Volltext
Verfasserangaben:Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletarì, Holger R. Roth, Shadi Albarqouni, Spyridon Bakas, Mathieu N. Galtier, Bennett A. Landman, Klaus Maier-Hein, Sébastien Ourselin, Micah Sheller, Ronald M. Summers, Andrew Trask, Daguang Xu, Maximilian Baust and M. Jorge Cardoso
Beschreibung
Zusammenfassung:Data-driven machine learning (ML) has emerged as a promising approach for building accurate and robust statistical models from medical data, which is collected in huge volumes by modern healthcare systems. Existing medical data is not fully exploited by ML primarily because it sits in data silos and privacy concerns restrict access to this data. However, without access to sufficient data, ML will be prevented from reaching its full potential and, ultimately, from making the transition from research to clinical practice. This paper considers key factors contributing to this issue, explores how federated learning (FL) may provide a solution for the future of digital health and highlights the challenges and considerations that need to be addressed.
Beschreibung:Gesehen am 03.02.2021
Beschreibung:Online Resource
ISSN:2398-6352
DOI:10.1038/s41746-020-00323-1