The future of digital health with federated learning
Data-driven machine learning (ML) has emerged as a promising approach for building accurate and robust statistical models from medical data, which is collected in huge volumes by modern healthcare systems. Existing medical data is not fully exploited by ML primarily because it sits in data silos and...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
14 September 2020
|
| In: |
npj digital medicine
Year: 2020, Jahrgang: 3, Heft: 1 |
| ISSN: | 2398-6352 |
| DOI: | 10.1038/s41746-020-00323-1 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41746-020-00323-1 Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41746-020-00323-1 |
| Verfasserangaben: | Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletarì, Holger R. Roth, Shadi Albarqouni, Spyridon Bakas, Mathieu N. Galtier, Bennett A. Landman, Klaus Maier-Hein, Sébastien Ourselin, Micah Sheller, Ronald M. Summers, Andrew Trask, Daguang Xu, Maximilian Baust and M. Jorge Cardoso |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1747240753 | ||
| 003 | DE-627 | ||
| 005 | 20220819094346.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210203s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1038/s41746-020-00323-1 |2 doi | |
| 035 | |a (DE-627)1747240753 | ||
| 035 | |a (DE-599)KXP1747240753 | ||
| 035 | |a (OCoLC)1341391577 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Rieke, Nicola |e VerfasserIn |0 (DE-588)1226265820 |0 (DE-627)1747241482 |4 aut | |
| 245 | 1 | 4 | |a The future of digital health with federated learning |c Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletarì, Holger R. Roth, Shadi Albarqouni, Spyridon Bakas, Mathieu N. Galtier, Bennett A. Landman, Klaus Maier-Hein, Sébastien Ourselin, Micah Sheller, Ronald M. Summers, Andrew Trask, Daguang Xu, Maximilian Baust and M. Jorge Cardoso |
| 264 | 1 | |c 14 September 2020 | |
| 300 | |a 7 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 03.02.2021 | ||
| 520 | |a Data-driven machine learning (ML) has emerged as a promising approach for building accurate and robust statistical models from medical data, which is collected in huge volumes by modern healthcare systems. Existing medical data is not fully exploited by ML primarily because it sits in data silos and privacy concerns restrict access to this data. However, without access to sufficient data, ML will be prevented from reaching its full potential and, ultimately, from making the transition from research to clinical practice. This paper considers key factors contributing to this issue, explores how federated learning (FL) may provide a solution for the future of digital health and highlights the challenges and considerations that need to be addressed. | ||
| 700 | 1 | |a Maier-Hein, Klaus H. |d 1980- |e VerfasserIn |0 (DE-588)1100551875 |0 (DE-627)85946461X |0 (DE-576)333771222 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t npj digital medicine |d [Basingstoke] : Macmillan Publishers Limited, 2016 |g 3(2020,1) Artikel-Nummer 119, 7 Seiten |h Online-Ressource |w (DE-627)1016587104 |w (DE-600)2925182-5 |w (DE-576)501513582 |x 2398-6352 |7 nnas |a The future of digital health with federated learning |
| 773 | 1 | 8 | |g volume:3 |g year:2020 |g number:1 |g extent:7 |a The future of digital health with federated learning |
| 856 | 4 | 0 | |u https://doi.org/10.1038/s41746-020-00323-1 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.nature.com/articles/s41746-020-00323-1 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210203 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1100551875 |a Maier-Hein, Klaus H. |m 1100551875:Maier-Hein, Klaus H. |d 910000 |d 911400 |e 910000PM1100551875 |e 911400PM1100551875 |k 0/910000/ |k 1/910000/911400/ |p 10 | ||
| 999 | |a KXP-PPN1747240753 |e 3848387824 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"recId":"1747240753","physDesc":[{"extent":"7 S."}],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"14 September 2020"}],"person":[{"display":"Rieke, Nicola","role":"aut","given":"Nicola","family":"Rieke"},{"display":"Maier-Hein, Klaus H.","family":"Maier-Hein","role":"aut","given":"Klaus H."}],"relHost":[{"note":["Gesehen am 06. September 2019"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"title":[{"title_sort":"npj digital medicine","title":"npj digital medicine"}],"part":{"year":"2020","text":"3(2020,1) Artikel-Nummer 119, 7 Seiten","volume":"3","extent":"7","issue":"1"},"id":{"zdb":["2925182-5"],"eki":["1016587104"],"issn":["2398-6352"]},"pubHistory":["2016-"],"origin":[{"dateIssuedDisp":"[2016]-","publisherPlace":"[Basingstoke]","publisher":"Macmillan Publishers Limited"}],"disp":"The future of digital health with federated learningnpj digital medicine","physDesc":[{"extent":"Online-Ressource"}],"recId":"1016587104"}],"title":[{"title_sort":"future of digital health with federated learning","title":"The future of digital health with federated learning"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"note":["Gesehen am 03.02.2021"],"name":{"displayForm":["Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletarì, Holger R. Roth, Shadi Albarqouni, Spyridon Bakas, Mathieu N. Galtier, Bennett A. Landman, Klaus Maier-Hein, Sébastien Ourselin, Micah Sheller, Ronald M. Summers, Andrew Trask, Daguang Xu, Maximilian Baust and M. Jorge Cardoso"]},"id":{"doi":["10.1038/s41746-020-00323-1"],"eki":["1747240753"]}} | ||
| SRT | |a RIEKENICOLFUTUREOFDI1420 | ||