Phase transitions in TGFT: functional renormalization group in the cyclic-melonic potential approximation and equivalence to O(N) models
In the group field theory approach to quantum gravity, continuous spacetime geometry is expected to emerge via phase transition. However, understanding the phase diagram and finding fixed points under the renormalization group flow remains a major challenge. In this work we tackle the issue for a te...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
December 23, 2020
|
| In: |
Journal of high energy physics
Year: 2020, Heft: 12 |
| ISSN: | 1029-8479 |
| DOI: | 10.1007/JHEP12(2020)159 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/JHEP12(2020)159 |
| Verfasserangaben: | Andreas G.A. Pithis and Johannes Thürigen |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1747374288 | ||
| 003 | DE-627 | ||
| 005 | 20220819094701.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210204s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/JHEP12(2020)159 |2 doi | |
| 035 | |a (DE-627)1747374288 | ||
| 035 | |a (DE-599)KXP1747374288 | ||
| 035 | |a (OCoLC)1341391338 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Pithis, Andreas G. A. |e VerfasserIn |0 (DE-588)1226304079 |0 (DE-627)1747374679 |4 aut | |
| 245 | 1 | 0 | |a Phase transitions in TGFT |b functional renormalization group in the cyclic-melonic potential approximation and equivalence to O(N) models |c Andreas G.A. Pithis and Johannes Thürigen |
| 264 | 1 | |c December 23, 2020 | |
| 300 | |a 54 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 04.02.2021 | ||
| 520 | |a In the group field theory approach to quantum gravity, continuous spacetime geometry is expected to emerge via phase transition. However, understanding the phase diagram and finding fixed points under the renormalization group flow remains a major challenge. In this work we tackle the issue for a tensorial group field theory using the functional renormalization group method. We derive the flow equation for the effective potential at any order restricting to a subclass of tensorial interactions called cyclic melonic and projecting to a constant field in group space. For a tensor field of rank r on U(1) we explicitly calculate beta functions and find equivalence with those of O(N) models but with an effective dimension flowing from r − 1 to zero. In the r − 1 dimensional regime, the equivalence to O(N) models is modified by a tensor specific flow of the anomalous dimension with the consequence that the Wilson-Fisher type fixed point solution has two branches. However, due to the flow to dimension zero, fixed points describing a transition between a broken and unbroken phase do not persist and we find universal symmetry restoration. To overcome this limitation, it is necessary to go beyond compact configuration space. | ||
| 700 | 1 | |a Thürigen, Johannes |e VerfasserIn |0 (DE-588)1077106106 |0 (DE-627)836018516 |0 (DE-576)445957271 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of high energy physics |d Berlin : Springer, 1997 |g (2020,12) Artikel-Nummer 159, 54 Seiten |h Online-Ressource |w (DE-627)320910571 |w (DE-600)2027350-2 |w (DE-576)095428305 |x 1029-8479 |7 nnas |a Phase transitions in TGFT functional renormalization group in the cyclic-melonic potential approximation and equivalence to O(N) models |
| 773 | 1 | 8 | |g year:2020 |g number:12 |g extent:54 |a Phase transitions in TGFT functional renormalization group in the cyclic-melonic potential approximation and equivalence to O(N) models |
| 856 | 4 | 0 | |u https://doi.org/10.1007/JHEP12(2020)159 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210204 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1226304079 |a Pithis, Andreas G. A. |m 1226304079:Pithis, Andreas G. A. |d 130000 |d 130300 |e 130000PP1226304079 |e 130300PP1226304079 |k 0/130000/ |k 1/130000/130300/ |p 1 |x j | ||
| 999 | |a KXP-PPN1747374288 |e 3848523965 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"54 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Berlin ; Heidelberg ; [Trieste] ; Bristol","publisher":"Springer ; SISSA ; IOP Publ.","dateIssuedKey":"1997","dateIssuedDisp":"1997-"}],"id":{"zdb":["2027350-2"],"eki":["320910571"],"issn":["1029-8479"]},"disp":"Phase transitions in TGFT functional renormalization group in the cyclic-melonic potential approximation and equivalence to O(N) modelsJournal of high energy physics","note":["Gesehen am 02.12.20"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"corporate":[{"role":"isb","display":"Institute of Physics","roleDisplay":"Herausgebendes Organ"}],"recId":"320910571","pubHistory":["Nachgewiesen 1997 -"],"part":{"year":"2020","issue":"12","text":"(2020,12) Artikel-Nummer 159, 54 Seiten","extent":"54"},"titleAlt":[{"title":"JHEP"}],"title":[{"subtitle":"JHEP ; a refereed journal written, run, and distributed by electronic means","title":"Journal of high energy physics","title_sort":"Journal of high energy physics"}]}],"name":{"displayForm":["Andreas G.A. Pithis and Johannes Thürigen"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"December 23, 2020"}],"id":{"eki":["1747374288"],"doi":["10.1007/JHEP12(2020)159"]},"note":["Gesehen am 04.02.2021"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1747374288","language":["eng"],"person":[{"given":"Andreas G. A.","family":"Pithis","role":"aut","display":"Pithis, Andreas G. A.","roleDisplay":"VerfasserIn"},{"family":"Thürigen","given":"Johannes","display":"Thürigen, Johannes","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"subtitle":"functional renormalization group in the cyclic-melonic potential approximation and equivalence to O(N) models","title":"Phase transitions in TGFT","title_sort":"Phase transitions in TGFT"}]} | ||
| SRT | |a PITHISANDRPHASETRANS2320 | ||