Phase transitions in TGFT: functional renormalization group in the cyclic-melonic potential approximation and equivalence to O(N) models

In the group field theory approach to quantum gravity, continuous spacetime geometry is expected to emerge via phase transition. However, understanding the phase diagram and finding fixed points under the renormalization group flow remains a major challenge. In this work we tackle the issue for a te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pithis, Andreas G. A. (VerfasserIn) , Thürigen, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: December 23, 2020
In: Journal of high energy physics
Year: 2020, Heft: 12
ISSN:1029-8479
DOI:10.1007/JHEP12(2020)159
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/JHEP12(2020)159
Volltext
Verfasserangaben:Andreas G.A. Pithis and Johannes Thürigen

MARC

LEADER 00000caa a2200000 c 4500
001 1747374288
003 DE-627
005 20220819094701.0
007 cr uuu---uuuuu
008 210204s2020 xx |||||o 00| ||eng c
024 7 |a 10.1007/JHEP12(2020)159  |2 doi 
035 |a (DE-627)1747374288 
035 |a (DE-599)KXP1747374288 
035 |a (OCoLC)1341391338 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Pithis, Andreas G. A.  |e VerfasserIn  |0 (DE-588)1226304079  |0 (DE-627)1747374679  |4 aut 
245 1 0 |a Phase transitions in TGFT  |b functional renormalization group in the cyclic-melonic potential approximation and equivalence to O(N) models  |c Andreas G.A. Pithis and Johannes Thürigen 
264 1 |c December 23, 2020 
300 |a 54 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 04.02.2021 
520 |a In the group field theory approach to quantum gravity, continuous spacetime geometry is expected to emerge via phase transition. However, understanding the phase diagram and finding fixed points under the renormalization group flow remains a major challenge. In this work we tackle the issue for a tensorial group field theory using the functional renormalization group method. We derive the flow equation for the effective potential at any order restricting to a subclass of tensorial interactions called cyclic melonic and projecting to a constant field in group space. For a tensor field of rank r on U(1) we explicitly calculate beta functions and find equivalence with those of O(N) models but with an effective dimension flowing from r − 1 to zero. In the r − 1 dimensional regime, the equivalence to O(N) models is modified by a tensor specific flow of the anomalous dimension with the consequence that the Wilson-Fisher type fixed point solution has two branches. However, due to the flow to dimension zero, fixed points describing a transition between a broken and unbroken phase do not persist and we find universal symmetry restoration. To overcome this limitation, it is necessary to go beyond compact configuration space. 
700 1 |a Thürigen, Johannes  |e VerfasserIn  |0 (DE-588)1077106106  |0 (DE-627)836018516  |0 (DE-576)445957271  |4 aut 
773 0 8 |i Enthalten in  |t Journal of high energy physics  |d Berlin : Springer, 1997  |g (2020,12) Artikel-Nummer 159, 54 Seiten  |h Online-Ressource  |w (DE-627)320910571  |w (DE-600)2027350-2  |w (DE-576)095428305  |x 1029-8479  |7 nnas  |a Phase transitions in TGFT functional renormalization group in the cyclic-melonic potential approximation and equivalence to O(N) models 
773 1 8 |g year:2020  |g number:12  |g extent:54  |a Phase transitions in TGFT functional renormalization group in the cyclic-melonic potential approximation and equivalence to O(N) models 
856 4 0 |u https://doi.org/10.1007/JHEP12(2020)159  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210204 
993 |a Article 
994 |a 2020 
998 |g 1226304079  |a Pithis, Andreas G. A.  |m 1226304079:Pithis, Andreas G. A.  |d 130000  |d 130300  |e 130000PP1226304079  |e 130300PP1226304079  |k 0/130000/  |k 1/130000/130300/  |p 1  |x j 
999 |a KXP-PPN1747374288  |e 3848523965 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"54 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Berlin ; Heidelberg ; [Trieste] ; Bristol","publisher":"Springer ; SISSA ; IOP Publ.","dateIssuedKey":"1997","dateIssuedDisp":"1997-"}],"id":{"zdb":["2027350-2"],"eki":["320910571"],"issn":["1029-8479"]},"disp":"Phase transitions in TGFT functional renormalization group in the cyclic-melonic potential approximation and equivalence to O(N) modelsJournal of high energy physics","note":["Gesehen am 02.12.20"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"corporate":[{"role":"isb","display":"Institute of Physics","roleDisplay":"Herausgebendes Organ"}],"recId":"320910571","pubHistory":["Nachgewiesen 1997 -"],"part":{"year":"2020","issue":"12","text":"(2020,12) Artikel-Nummer 159, 54 Seiten","extent":"54"},"titleAlt":[{"title":"JHEP"}],"title":[{"subtitle":"JHEP ; a refereed journal written, run, and distributed by electronic means","title":"Journal of high energy physics","title_sort":"Journal of high energy physics"}]}],"name":{"displayForm":["Andreas G.A. Pithis and Johannes Thürigen"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"December 23, 2020"}],"id":{"eki":["1747374288"],"doi":["10.1007/JHEP12(2020)159"]},"note":["Gesehen am 04.02.2021"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1747374288","language":["eng"],"person":[{"given":"Andreas G. A.","family":"Pithis","role":"aut","display":"Pithis, Andreas G. A.","roleDisplay":"VerfasserIn"},{"family":"Thürigen","given":"Johannes","display":"Thürigen, Johannes","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"subtitle":"functional renormalization group in the cyclic-melonic potential approximation and equivalence to O(N) models","title":"Phase transitions in TGFT","title_sort":"Phase transitions in TGFT"}]} 
SRT |a PITHISANDRPHASETRANS2320