A differentiable mapping of mesh cells based on finite elements on quadrilateral and hexahedral meshes
Finite elements of higher continuity, say conforming in H 2 instead of H 1, require a mapping from reference cells to mesh cells which is continuously differentiable across cell interfaces. In this article, we propose an algorithm to obtain such mappings given a topologically regular mesh in the sta...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2021
|
| In: |
Computational methods in applied mathematics
Year: 2021, Jahrgang: 21, Heft: 1, Pages: 1-11 |
| ISSN: | 1609-9389 |
| DOI: | 10.1515/cmam-2020-0159 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1515/cmam-2020-0159 Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/document/doi/10.1515/cmam-2020-0159/html |
| Verfasserangaben: | Daniel Arndt and Guido Kanschat |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1747633542 | ||
| 003 | DE-627 | ||
| 005 | 20250530002958.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210205s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1515/cmam-2020-0159 |2 doi | |
| 035 | |a (DE-627)1747633542 | ||
| 035 | |a (DE-599)KXP1747633542 | ||
| 035 | |a (OCoLC)1341391835 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Arndt, Daniel |d 1988- |e VerfasserIn |0 (DE-588)1151134910 |0 (DE-627)101136851X |0 (DE-576)497498634 |4 aut | |
| 245 | 1 | 2 | |a A differentiable mapping of mesh cells based on finite elements on quadrilateral and hexahedral meshes |c Daniel Arndt and Guido Kanschat |
| 264 | 1 | |c 2021 | |
| 300 | |a 11 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 05.02.2021 | ||
| 520 | |a Finite elements of higher continuity, say conforming in H 2 instead of H 1, require a mapping from reference cells to mesh cells which is continuously differentiable across cell interfaces. In this article, we propose an algorithm to obtain such mappings given a topologically regular mesh in the standard format of vertex coordinates and a description of the boundary. A variant of the algorithm with orthogonal edges in each vertex is proposed. We introduce necessary modifications in the case of adaptive mesh refinement with nonconforming edges. Furthermore, we discuss efficient storage of the necessary data. | ||
| 700 | 1 | |a Kanschat, Guido |e VerfasserIn |0 (DE-588)102535334X |0 (DE-627)72215612X |0 (DE-576)175755949 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Computational methods in applied mathematics |d Berlin : De Gruyter, 2001 |g 21(2021), 1, Seite 1-11 |h Online-Ressource |w (DE-627)345035380 |w (DE-600)2075629-X |w (DE-576)347264921 |x 1609-9389 |7 nnas |a A differentiable mapping of mesh cells based on finite elements on quadrilateral and hexahedral meshes |
| 773 | 1 | 8 | |g volume:21 |g year:2021 |g number:1 |g pages:1-11 |g extent:11 |a A differentiable mapping of mesh cells based on finite elements on quadrilateral and hexahedral meshes |
| 856 | 4 | 0 | |u https://doi.org/10.1515/cmam-2020-0159 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.degruyterbrill.com/document/doi/10.1515/cmam-2020-0159/html |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210205 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 102535334X |a Kanschat, Guido |m 102535334X:Kanschat, Guido |d 700000 |d 708000 |e 700000PK102535334X |e 708000PK102535334X |k 0/700000/ |k 1/700000/708000/ |p 2 |y j | ||
| 998 | |g 1151134910 |a Arndt, Daniel |m 1151134910:Arndt, Daniel |p 1 |x j | ||
| 999 | |a KXP-PPN1747633542 |e 3849395561 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"recId":"1747633542","name":{"displayForm":["Daniel Arndt and Guido Kanschat"]},"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1747633542"],"doi":["10.1515/cmam-2020-0159"]},"note":["Gesehen am 05.02.2021"],"origin":[{"dateIssuedDisp":"2021","dateIssuedKey":"2021"}],"relHost":[{"disp":"A differentiable mapping of mesh cells based on finite elements on quadrilateral and hexahedral meshesComputational methods in applied mathematics","language":["eng"],"titleAlt":[{"title":"CMAM"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title_sort":"Computational methods in applied mathematics","title":"Computational methods in applied mathematics"}],"part":{"text":"21(2021), 1, Seite 1-11","pages":"1-11","issue":"1","year":"2021","volume":"21","extent":"11"},"recId":"345035380","id":{"zdb":["2075629-X"],"eki":["345035380"],"issn":["1609-9389"]},"pubHistory":["1.2001 -"],"note":["Gesehen am 29.01.13"],"origin":[{"dateIssuedDisp":"2001-","publisher":"De Gruyter ; Institute of Mathematics of the National Academy of Sciences of Belarus","publisherPlace":"Berlin ; Minsk","dateIssuedKey":"2001"}],"physDesc":[{"extent":"Online-Ressource"}]}],"title":[{"title":"A differentiable mapping of mesh cells based on finite elements on quadrilateral and hexahedral meshes","title_sort":"differentiable mapping of mesh cells based on finite elements on quadrilateral and hexahedral meshes"}],"person":[{"role":"aut","display":"Arndt, Daniel","given":"Daniel","family":"Arndt"},{"display":"Kanschat, Guido","role":"aut","family":"Kanschat","given":"Guido"}],"physDesc":[{"extent":"11 S."}]} | ||
| SRT | |a ARNDTDANIEDIFFERENTI2021 | ||