A differentiable mapping of mesh cells based on finite elements on quadrilateral and hexahedral meshes

Finite elements of higher continuity, say conforming in H 2 instead of H 1, require a mapping from reference cells to mesh cells which is continuously differentiable across cell interfaces. In this article, we propose an algorithm to obtain such mappings given a topologically regular mesh in the sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Arndt, Daniel (VerfasserIn) , Kanschat, Guido (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2021
In: Computational methods in applied mathematics
Year: 2021, Jahrgang: 21, Heft: 1, Pages: 1-11
ISSN:1609-9389
DOI:10.1515/cmam-2020-0159
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1515/cmam-2020-0159
Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/document/doi/10.1515/cmam-2020-0159/html
Volltext
Verfasserangaben:Daniel Arndt and Guido Kanschat

MARC

LEADER 00000caa a22000002c 4500
001 1747633542
003 DE-627
005 20250530002958.0
007 cr uuu---uuuuu
008 210205s2021 xx |||||o 00| ||eng c
024 7 |a 10.1515/cmam-2020-0159  |2 doi 
035 |a (DE-627)1747633542 
035 |a (DE-599)KXP1747633542 
035 |a (OCoLC)1341391835 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Arndt, Daniel  |d 1988-  |e VerfasserIn  |0 (DE-588)1151134910  |0 (DE-627)101136851X  |0 (DE-576)497498634  |4 aut 
245 1 2 |a A differentiable mapping of mesh cells based on finite elements on quadrilateral and hexahedral meshes  |c Daniel Arndt and Guido Kanschat 
264 1 |c 2021 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 05.02.2021 
520 |a Finite elements of higher continuity, say conforming in H 2 instead of H 1, require a mapping from reference cells to mesh cells which is continuously differentiable across cell interfaces. In this article, we propose an algorithm to obtain such mappings given a topologically regular mesh in the standard format of vertex coordinates and a description of the boundary. A variant of the algorithm with orthogonal edges in each vertex is proposed. We introduce necessary modifications in the case of adaptive mesh refinement with nonconforming edges. Furthermore, we discuss efficient storage of the necessary data. 
700 1 |a Kanschat, Guido  |e VerfasserIn  |0 (DE-588)102535334X  |0 (DE-627)72215612X  |0 (DE-576)175755949  |4 aut 
773 0 8 |i Enthalten in  |t Computational methods in applied mathematics  |d Berlin : De Gruyter, 2001  |g 21(2021), 1, Seite 1-11  |h Online-Ressource  |w (DE-627)345035380  |w (DE-600)2075629-X  |w (DE-576)347264921  |x 1609-9389  |7 nnas  |a A differentiable mapping of mesh cells based on finite elements on quadrilateral and hexahedral meshes 
773 1 8 |g volume:21  |g year:2021  |g number:1  |g pages:1-11  |g extent:11  |a A differentiable mapping of mesh cells based on finite elements on quadrilateral and hexahedral meshes 
856 4 0 |u https://doi.org/10.1515/cmam-2020-0159  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.degruyterbrill.com/document/doi/10.1515/cmam-2020-0159/html  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210205 
993 |a Article 
994 |a 2021 
998 |g 102535334X  |a Kanschat, Guido  |m 102535334X:Kanschat, Guido  |d 700000  |d 708000  |e 700000PK102535334X  |e 708000PK102535334X  |k 0/700000/  |k 1/700000/708000/  |p 2  |y j 
998 |g 1151134910  |a Arndt, Daniel  |m 1151134910:Arndt, Daniel  |p 1  |x j 
999 |a KXP-PPN1747633542  |e 3849395561 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1747633542","name":{"displayForm":["Daniel Arndt and Guido Kanschat"]},"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1747633542"],"doi":["10.1515/cmam-2020-0159"]},"note":["Gesehen am 05.02.2021"],"origin":[{"dateIssuedDisp":"2021","dateIssuedKey":"2021"}],"relHost":[{"disp":"A differentiable mapping of mesh cells based on finite elements on quadrilateral and hexahedral meshesComputational methods in applied mathematics","language":["eng"],"titleAlt":[{"title":"CMAM"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title_sort":"Computational methods in applied mathematics","title":"Computational methods in applied mathematics"}],"part":{"text":"21(2021), 1, Seite 1-11","pages":"1-11","issue":"1","year":"2021","volume":"21","extent":"11"},"recId":"345035380","id":{"zdb":["2075629-X"],"eki":["345035380"],"issn":["1609-9389"]},"pubHistory":["1.2001 -"],"note":["Gesehen am 29.01.13"],"origin":[{"dateIssuedDisp":"2001-","publisher":"De Gruyter ; Institute of Mathematics of the National Academy of Sciences of Belarus","publisherPlace":"Berlin ; Minsk","dateIssuedKey":"2001"}],"physDesc":[{"extent":"Online-Ressource"}]}],"title":[{"title":"A differentiable mapping of mesh cells based on finite elements on quadrilateral and hexahedral meshes","title_sort":"differentiable mapping of mesh cells based on finite elements on quadrilateral and hexahedral meshes"}],"person":[{"role":"aut","display":"Arndt, Daniel","given":"Daniel","family":"Arndt"},{"display":"Kanschat, Guido","role":"aut","family":"Kanschat","given":"Guido"}],"physDesc":[{"extent":"11 S."}]} 
SRT |a ARNDTDANIEDIFFERENTI2021