Minimum degree conditions for monochromatic cycle partitioning
A classical result of Erdős, Gyárfás and Pyber states that any r-edge-coloured complete graph has a partition into O(r2logr) monochromatic cycles. Here we determine the minimum degree threshold for this property. More precisely, we show that there exists a constant c such that any r-edge-coloure...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2021
|
| In: |
Journal of combinatorial theory
Year: 2020, Jahrgang: 146, Pages: 96-123 |
| DOI: | 10.1016/j.jctb.2020.07.005 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jctb.2020.07.005 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0095895620300721 |
| Verfasserangaben: | Dániel Korándi, Richard Lang, Shoham Letzter, Alexey Pokrovskiy |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1747731072 | ||
| 003 | DE-627 | ||
| 005 | 20220819100727.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210208r20212020xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.jctb.2020.07.005 |2 doi | |
| 035 | |a (DE-627)1747731072 | ||
| 035 | |a (DE-599)KXP1747731072 | ||
| 035 | |a (OCoLC)1341391898 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Korándi, Dániel |d 1990- |e VerfasserIn |0 (DE-588)1102417378 |0 (DE-627)860345580 |0 (DE-576)470228326 |4 aut | |
| 245 | 1 | 0 | |a Minimum degree conditions for monochromatic cycle partitioning |c Dániel Korándi, Richard Lang, Shoham Letzter, Alexey Pokrovskiy |
| 264 | 1 | |c 2021 | |
| 300 | |a 28 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Available online 27 August 2020 | ||
| 500 | |a Gesehen am 08.02.2021 | ||
| 520 | |a A classical result of Erdős, Gyárfás and Pyber states that any r-edge-coloured complete graph has a partition into O(r2logr) monochromatic cycles. Here we determine the minimum degree threshold for this property. More precisely, we show that there exists a constant c such that any r-edge-coloured graph on n vertices with minimum degree at least n/2+c⋅rlogn has a partition into O(r2) monochromatic cycles. We also provide constructions showing that the minimum degree condition and the number of cycles are essentially tight. | ||
| 534 | |c 2020 | ||
| 650 | 4 | |a Dirac-type problems | |
| 650 | 4 | |a Hamilton cycles | |
| 650 | 4 | |a Monochromatic cycle partitioning | |
| 650 | 4 | |a Ramsey theory | |
| 700 | 1 | |a Lang, Richard |e VerfasserIn |0 (DE-588)122670008X |0 (DE-627)1747737372 |4 aut | |
| 700 | 1 | |a Letzter, Shoham |e VerfasserIn |4 aut | |
| 700 | 1 | |a Pokrovskiy, Alexey |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of combinatorial theory |d Orlando, Fla. : Academic Press, 1971 |g 146(2021), Seite 96-123 |h Online-Ressource |w (DE-627)266892426 |w (DE-600)1469158-9 |w (DE-576)104193816 |7 nnas |a Minimum degree conditions for monochromatic cycle partitioning |
| 773 | 1 | 8 | |g volume:146 |g year:2021 |g pages:96-123 |g extent:28 |a Minimum degree conditions for monochromatic cycle partitioning |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.jctb.2020.07.005 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0095895620300721 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210208 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 122670008X |a Lang, Richard |m 122670008X:Lang, Richard |d 110000 |d 110300 |e 110000PL122670008X |e 110300PL122670008X |k 0/110000/ |k 1/110000/110300/ |p 2 | ||
| 999 | |a KXP-PPN1747731072 |e 3849771709 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Dániel Korándi, Richard Lang, Shoham Letzter, Alexey Pokrovskiy"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2021"}],"id":{"doi":["10.1016/j.jctb.2020.07.005"],"eki":["1747731072"]},"physDesc":[{"extent":"28 S."}],"relHost":[{"recId":"266892426","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Minimum degree conditions for monochromatic cycle partitioningJournal of combinatorial theory","note":["Gesehen am 13.01.14"],"part":{"pages":"96-123","year":"2021","extent":"28","volume":"146","text":"146(2021), Seite 96-123"},"titleAlt":[{"title":"Journal of combinatorial theory / B"},{"title":"JCTB"}],"pubHistory":["10.1971 - 103.2013; Vol. 104.2014 -"],"title":[{"title_sort":"Journal of combinatorial theory","title":"Journal of combinatorial theory","subtitle":"JCTB"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["266892426"],"zdb":["1469158-9"]},"origin":[{"publisherPlace":"Orlando, Fla.","dateIssuedDisp":"1971-","publisher":"Academic Press","dateIssuedKey":"1971"}]}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Korándi, Dániel","given":"Dániel","family":"Korándi"},{"given":"Richard","family":"Lang","role":"aut","display":"Lang, Richard","roleDisplay":"VerfasserIn"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Letzter, Shoham","given":"Shoham","family":"Letzter"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Pokrovskiy, Alexey","given":"Alexey","family":"Pokrovskiy"}],"title":[{"title":"Minimum degree conditions for monochromatic cycle partitioning","title_sort":"Minimum degree conditions for monochromatic cycle partitioning"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Available online 27 August 2020","Gesehen am 08.02.2021"],"language":["eng"],"recId":"1747731072"} | ||
| SRT | |a KORANDIDANMINIMUMDEG2021 | ||