Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders
Recent advances in single-cell RNA sequencing have driven the simultaneous measurement of the expression of thousands of genes in thousands of single cells. These growing datasets allow us to model gene sets in biological networks at an unprecedented level of detail, in spite of heterogeneous cell p...
Gespeichert in:
| Hauptverfasser: | , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
07 December 2020
|
| In: |
Nature machine intelligence
Year: 2020, Jahrgang: 2, Heft: 12, Pages: 800-819 |
| ISSN: | 2522-5839 |
| DOI: | 10.1038/s42256-020-00269-9 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s42256-020-00269-9 Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s42256-020-00269-9 |
| Verfasserangaben: | Soeren Lukassen, Foo Wei Ten, Lukas Adam, Roland Eils and Christian Conrad |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 174775627X | ||
| 003 | DE-627 | ||
| 005 | 20241229024309.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210208s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1038/s42256-020-00269-9 |2 doi | |
| 035 | |a (DE-627)174775627X | ||
| 035 | |a (DE-599)KXP174775627X | ||
| 035 | |a (OCoLC)1341391947 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Lukassen, Sören |e VerfasserIn |0 (DE-588)1177420376 |0 (DE-627)104878990X |0 (DE-576)517408511 |4 aut | |
| 245 | 1 | 0 | |a Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders |c Soeren Lukassen, Foo Wei Ten, Lukas Adam, Roland Eils and Christian Conrad |
| 264 | 1 | |c 07 December 2020 | |
| 300 | |a 19 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 08.02.2021 | ||
| 520 | |a Recent advances in single-cell RNA sequencing have driven the simultaneous measurement of the expression of thousands of genes in thousands of single cells. These growing datasets allow us to model gene sets in biological networks at an unprecedented level of detail, in spite of heterogeneous cell populations. Here, we propose a deep neural network model that is a hybrid of matrix factorization and variational autoencoders, which we call restricted latent variational autoencoder (resVAE). The model uses weights as factorized matrices to obtain gene sets, while class-specific inputs to the latent variable space facilitate a plausible identification of cell types. This artificial neural network model seamlessly integrates functional gene set inference, experimental covariate effect isolation, and static gene identification, which we conceptually demonstrate here for four single-cell RNA sequencing datasets. | ||
| 700 | 1 | |a Ten, Foo Wei |e VerfasserIn |4 aut | |
| 700 | 1 | |8 1\p |a Adam, Lukas |e VerfasserIn |0 (DE-588)1312484837 |0 (DE-627)1872283977 |4 aut | |
| 700 | 1 | |a Eils, Roland |d 1965- |e VerfasserIn |0 (DE-588)1020648287 |0 (DE-627)691291705 |0 (DE-576)361718195 |4 aut | |
| 700 | 1 | |8 2\p |a Conrad, Christian |e VerfasserIn |0 (DE-588)1168278953 |0 (DE-627)1031931732 |0 (DE-576)511502087 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Nature machine intelligence |d [London] : Springer Nature Publishing, 2019 |g 2(2020), 12, Seite 800-819 |h Online-Ressource |w (DE-627)1025147669 |w (DE-600)2933875-X |w (DE-576)506804771 |x 2522-5839 |7 nnas |a Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders |
| 773 | 1 | 8 | |g volume:2 |g year:2020 |g number:12 |g pages:800-819 |g extent:19 |a Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders |
| 856 | 4 | 0 | |u https://doi.org/10.1038/s42256-020-00269-9 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |7 1 |
| 856 | 4 | 0 | |u https://www.nature.com/articles/s42256-020-00269-9 |x Verlag |z lizenzpflichtig |3 Volltext |7 1 |
| 883 | |8 1\p |a cgwrk |d 20241001 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | ||
| 883 | |8 2\p |a cgwrk |d 20241001 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | ||
| 951 | |a AR | ||
| 992 | |a 20210208 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1168278953 |a Conrad, Christian |m 1168278953:Conrad, Christian |d 700000 |d 716000 |e 700000PC1168278953 |e 716000PC1168278953 |k 0/700000/ |k 1/700000/716000/ |p 5 |y j | ||
| 998 | |g 1020648287 |a Eils, Roland |m 1020648287:Eils, Roland |d 910000 |d 999701 |d 50000 |e 910000PE1020648287 |e 999701PE1020648287 |e 50000PE1020648287 |k 0/910000/ |k 1/910000/999701/ |k 0/50000/ |p 4 | ||
| 999 | |a KXP-PPN174775627X |e 3849891119 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title_sort":"Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders","title":"Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders"}],"person":[{"display":"Lukassen, Sören","given":"Sören","role":"aut","family":"Lukassen"},{"display":"Ten, Foo Wei","family":"Ten","role":"aut","given":"Foo Wei"},{"role":"aut","given":"Lukas","family":"Adam","display":"Adam, Lukas"},{"display":"Eils, Roland","family":"Eils","role":"aut","given":"Roland"},{"given":"Christian","role":"aut","family":"Conrad","display":"Conrad, Christian"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"physDesc":[{"extent":"19 S."}],"language":["eng"],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"07 December 2020"}],"id":{"doi":["10.1038/s42256-020-00269-9"],"eki":["174775627X"]},"recId":"174775627X","name":{"displayForm":["Soeren Lukassen, Foo Wei Ten, Lukas Adam, Roland Eils and Christian Conrad"]},"note":["Gesehen am 08.02.2021"],"relHost":[{"origin":[{"dateIssuedDisp":"[2019]-","publisher":"Springer Nature Publishing","publisherPlace":"[London]"}],"id":{"zdb":["2933875-X"],"issn":["2522-5839"],"eki":["1025147669"]},"part":{"issue":"12","year":"2020","pages":"800-819","volume":"2","text":"2(2020), 12, Seite 800-819","extent":"19"},"recId":"1025147669","disp":"Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencodersNature machine intelligence","title":[{"title":"Nature machine intelligence","title_sort":"Nature machine intelligence"}],"note":["Gesehen am 30.04.25"],"type":{"bibl":"periodical","media":"Online-Ressource"},"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["Volume 1, no. 1 (January 2019)-"],"language":["eng"]}]} | ||
| SRT | |a LUKASSENSOGENESETINF0720 | ||