Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders

Recent advances in single-cell RNA sequencing have driven the simultaneous measurement of the expression of thousands of genes in thousands of single cells. These growing datasets allow us to model gene sets in biological networks at an unprecedented level of detail, in spite of heterogeneous cell p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lukassen, Sören (VerfasserIn) , Ten, Foo Wei (VerfasserIn) , Adam, Lukas (VerfasserIn) , Eils, Roland (VerfasserIn) , Conrad, Christian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 07 December 2020
In: Nature machine intelligence
Year: 2020, Jahrgang: 2, Heft: 12, Pages: 800-819
ISSN:2522-5839
DOI:10.1038/s42256-020-00269-9
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s42256-020-00269-9
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s42256-020-00269-9
Volltext
Verfasserangaben:Soeren Lukassen, Foo Wei Ten, Lukas Adam, Roland Eils and Christian Conrad

MARC

LEADER 00000caa a2200000 c 4500
001 174775627X
003 DE-627
005 20241229024309.0
007 cr uuu---uuuuu
008 210208s2020 xx |||||o 00| ||eng c
024 7 |a 10.1038/s42256-020-00269-9  |2 doi 
035 |a (DE-627)174775627X 
035 |a (DE-599)KXP174775627X 
035 |a (OCoLC)1341391947 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Lukassen, Sören  |e VerfasserIn  |0 (DE-588)1177420376  |0 (DE-627)104878990X  |0 (DE-576)517408511  |4 aut 
245 1 0 |a Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders  |c Soeren Lukassen, Foo Wei Ten, Lukas Adam, Roland Eils and Christian Conrad 
264 1 |c 07 December 2020 
300 |a 19 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 08.02.2021 
520 |a Recent advances in single-cell RNA sequencing have driven the simultaneous measurement of the expression of thousands of genes in thousands of single cells. These growing datasets allow us to model gene sets in biological networks at an unprecedented level of detail, in spite of heterogeneous cell populations. Here, we propose a deep neural network model that is a hybrid of matrix factorization and variational autoencoders, which we call restricted latent variational autoencoder (resVAE). The model uses weights as factorized matrices to obtain gene sets, while class-specific inputs to the latent variable space facilitate a plausible identification of cell types. This artificial neural network model seamlessly integrates functional gene set inference, experimental covariate effect isolation, and static gene identification, which we conceptually demonstrate here for four single-cell RNA sequencing datasets. 
700 1 |a Ten, Foo Wei  |e VerfasserIn  |4 aut 
700 1 |8 1\p  |a Adam, Lukas  |e VerfasserIn  |0 (DE-588)1312484837  |0 (DE-627)1872283977  |4 aut 
700 1 |a Eils, Roland  |d 1965-  |e VerfasserIn  |0 (DE-588)1020648287  |0 (DE-627)691291705  |0 (DE-576)361718195  |4 aut 
700 1 |8 2\p  |a Conrad, Christian  |e VerfasserIn  |0 (DE-588)1168278953  |0 (DE-627)1031931732  |0 (DE-576)511502087  |4 aut 
773 0 8 |i Enthalten in  |t Nature machine intelligence  |d [London] : Springer Nature Publishing, 2019  |g 2(2020), 12, Seite 800-819  |h Online-Ressource  |w (DE-627)1025147669  |w (DE-600)2933875-X  |w (DE-576)506804771  |x 2522-5839  |7 nnas  |a Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders 
773 1 8 |g volume:2  |g year:2020  |g number:12  |g pages:800-819  |g extent:19  |a Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders 
856 4 0 |u https://doi.org/10.1038/s42256-020-00269-9  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext  |7 1 
856 4 0 |u https://www.nature.com/articles/s42256-020-00269-9  |x Verlag  |z lizenzpflichtig  |3 Volltext  |7 1 
883 |8 1\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20210208 
993 |a Article 
994 |a 2020 
998 |g 1168278953  |a Conrad, Christian  |m 1168278953:Conrad, Christian  |d 700000  |d 716000  |e 700000PC1168278953  |e 716000PC1168278953  |k 0/700000/  |k 1/700000/716000/  |p 5  |y j 
998 |g 1020648287  |a Eils, Roland  |m 1020648287:Eils, Roland  |d 910000  |d 999701  |d 50000  |e 910000PE1020648287  |e 999701PE1020648287  |e 50000PE1020648287  |k 0/910000/  |k 1/910000/999701/  |k 0/50000/  |p 4 
999 |a KXP-PPN174775627X  |e 3849891119 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders","title":"Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders"}],"person":[{"display":"Lukassen, Sören","given":"Sören","role":"aut","family":"Lukassen"},{"display":"Ten, Foo Wei","family":"Ten","role":"aut","given":"Foo Wei"},{"role":"aut","given":"Lukas","family":"Adam","display":"Adam, Lukas"},{"display":"Eils, Roland","family":"Eils","role":"aut","given":"Roland"},{"given":"Christian","role":"aut","family":"Conrad","display":"Conrad, Christian"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"physDesc":[{"extent":"19 S."}],"language":["eng"],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"07 December 2020"}],"id":{"doi":["10.1038/s42256-020-00269-9"],"eki":["174775627X"]},"recId":"174775627X","name":{"displayForm":["Soeren Lukassen, Foo Wei Ten, Lukas Adam, Roland Eils and Christian Conrad"]},"note":["Gesehen am 08.02.2021"],"relHost":[{"origin":[{"dateIssuedDisp":"[2019]-","publisher":"Springer Nature Publishing","publisherPlace":"[London]"}],"id":{"zdb":["2933875-X"],"issn":["2522-5839"],"eki":["1025147669"]},"part":{"issue":"12","year":"2020","pages":"800-819","volume":"2","text":"2(2020), 12, Seite 800-819","extent":"19"},"recId":"1025147669","disp":"Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencodersNature machine intelligence","title":[{"title":"Nature machine intelligence","title_sort":"Nature machine intelligence"}],"note":["Gesehen am 30.04.25"],"type":{"bibl":"periodical","media":"Online-Ressource"},"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["Volume 1, no. 1 (January 2019)-"],"language":["eng"]}]} 
SRT |a LUKASSENSOGENESETINF0720