Dependence of Lyubeznik numbers of cones of projective schemes on projective embeddings

We construct complex projective schemes with Lyubeznik numbers of their cones depending on the choices of projective embeddings. This answers a question of G. Lyubeznik in the characteristic 0 case. It contrasts with a theorem of W. Zhang in the positive characteristic case where the Frobenius endom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Reichelt, Thomas (VerfasserIn) , Saito, Morihiko (VerfasserIn) , Walther, Hans Ulrich (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 January 2021
In: Selecta mathematica
Year: 2021, Jahrgang: 27, Heft: 1
ISSN:1420-9020
DOI:10.1007/s00029-020-00612-3
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00029-020-00612-3
Verlag, lizenzpflichtig, Volltext: https://link.springer.com/article/10.1007%2Fs00029-020-00612-3
Volltext
Verfasserangaben:Thomas Reichelt · Morihiko Saito · Uli Walther
Beschreibung
Zusammenfassung:We construct complex projective schemes with Lyubeznik numbers of their cones depending on the choices of projective embeddings. This answers a question of G. Lyubeznik in the characteristic 0 case. It contrasts with a theorem of W. Zhang in the positive characteristic case where the Frobenius endomorphism is used. Reducibility of schemes is essential in our argument. B. Wang recently constructed examples of irreducible projective schemes (which are not normal) from our examples of reducible ones. So the question is still open in the normal singular case.
Beschreibung:Gesehen am 09.02.2021
Beschreibung:Online Resource
ISSN:1420-9020
DOI:10.1007/s00029-020-00612-3