Converting networks to predictive logic models from perturbation signalling data with CellNOpt

The molecular changes induced by perturbations such as drugs and ligands are highly informative of the intracellular wiring. Our capacity to generate large datasets is increasing steadily. A useful way to extract mechanistic insight from the data is by integrating them with a prior knowledge network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gjerga, Enio (VerfasserIn) , Trairatphisan, Panuwat (VerfasserIn) , Gabor, Attila (VerfasserIn) , Koch, Hermann (VerfasserIn) , Chevalier, Celine (VerfasserIn) , Ceccarelli, Franceco (VerfasserIn) , Dugourd, Aurélien (VerfasserIn) , Mitsos, Alexander (VerfasserIn) , Sáez Rodríguez, Julio (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 09 June 2020
In: Bioinformatics
Year: 2020, Jahrgang: 36, Heft: 16, Pages: 4523-4524
ISSN:1367-4811
DOI:10.1093/bioinformatics/btaa561
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/bioinformatics/btaa561
Verlag, lizenzpflichtig, Volltext: https://academic.oup.com/bioinformatics/article/36/16/4523/5855133
Volltext
Verfasserangaben:Enio Gjerga, Panuwat Trairatphisan, Attila Gabor, Hermann Koch, Celine Chevalier, Franceco Ceccarelli, Aurelien Dugourd, Alexander Mitsos and Julio Saez-Rodriguez

MARC

LEADER 00000caa a2200000 c 4500
001 1747797979
003 DE-627
005 20241229024330.0
007 cr uuu---uuuuu
008 210209s2020 xx |||||o 00| ||eng c
024 7 |a 10.1093/bioinformatics/btaa561  |2 doi 
035 |a (DE-627)1747797979 
035 |a (DE-599)KXP1747797979 
035 |a (OCoLC)1341391921 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 32  |2 sdnb 
100 1 |a Gjerga, Enio  |e VerfasserIn  |0 (DE-588)1207289779  |0 (DE-627)1693485303  |4 aut 
245 1 0 |a Converting networks to predictive logic models from perturbation signalling data with CellNOpt  |c Enio Gjerga, Panuwat Trairatphisan, Attila Gabor, Hermann Koch, Celine Chevalier, Franceco Ceccarelli, Aurelien Dugourd, Alexander Mitsos and Julio Saez-Rodriguez 
264 1 |c 09 June 2020 
300 |a 2 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 09.02.2021 
520 |a The molecular changes induced by perturbations such as drugs and ligands are highly informative of the intracellular wiring. Our capacity to generate large datasets is increasing steadily. A useful way to extract mechanistic insight from the data is by integrating them with a prior knowledge network of signalling to obtain dynamic models. CellNOpt is a collection of Bioconductor R packages for building logic models from perturbation data and prior knowledge of signalling networks. We have recently developed new components and refined the existing ones to keep up with the computational demand of increasingly large datasets, including (i) an efficient integer linear programming, (ii) a probabilistic logic implementation for semi-quantitative datasets, (iii) the integration of a stochastic Boolean simulator, (iv) a tool to identify missing links, (v) systematic post-hoc analyses and (vi) an R-Shiny tool to run CellNOpt interactively.R-package(s): https://github.com/saezlab/cellnopt.Supplementary data are available at Bioinformatics online. 
700 1 |a Trairatphisan, Panuwat  |e VerfasserIn  |0 (DE-588)1207289132  |0 (DE-627)1693483963  |4 aut 
700 1 |a Gabor, Attila  |e VerfasserIn  |0 (DE-588)1226773125  |0 (DE-627)1747798843  |4 aut 
700 1 |a Koch, Hermann  |e VerfasserIn  |4 aut 
700 1 |a Chevalier, Celine  |e VerfasserIn  |4 aut 
700 1 |a Ceccarelli, Franceco  |e VerfasserIn  |4 aut 
700 1 |a Dugourd, Aurélien  |d 1989-  |e VerfasserIn  |0 (DE-588)1219540064  |0 (DE-627)1735481246  |4 aut 
700 1 |8 1\p  |a Mitsos, Alexander  |e VerfasserIn  |0 (DE-588)137297297  |0 (DE-627)591597527  |0 (DE-576)302901736  |4 aut 
700 1 |a Sáez Rodríguez, Julio  |d 1978-  |e VerfasserIn  |0 (DE-588)133764362  |0 (DE-627)555766632  |0 (DE-576)300083114  |4 aut 
773 0 8 |i Enthalten in  |t Bioinformatics  |d Oxford : Oxford Univ. Press, 1998  |g 36(2020), 16, Seite 4523-4524  |h Online-Ressource  |w (DE-627)266884857  |w (DE-600)1468345-3  |w (DE-576)079420133  |x 1367-4811  |7 nnas  |a Converting networks to predictive logic models from perturbation signalling data with CellNOpt 
773 1 8 |g volume:36  |g year:2020  |g number:16  |g pages:4523-4524  |g extent:2  |a Converting networks to predictive logic models from perturbation signalling data with CellNOpt 
856 4 0 |u https://doi.org/10.1093/bioinformatics/btaa561  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://academic.oup.com/bioinformatics/article/36/16/4523/5855133  |x Verlag  |z lizenzpflichtig  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20210209 
993 |a Article 
994 |a 2020 
998 |g 133764362  |a Sáez Rodríguez, Julio  |m 133764362:Sáez Rodríguez, Julio  |d 910000  |d 912900  |e 910000PS133764362  |e 912900PS133764362  |k 0/910000/  |k 1/910000/912900/  |p 9  |y j 
998 |g 1219540064  |a Dugourd, Aurélien  |m 1219540064:Dugourd, Aurélien  |d 910000  |d 912900  |e 910000PD1219540064  |e 912900PD1219540064  |k 0/910000/  |k 1/910000/912900/  |p 7 
998 |g 1226773125  |a Gabor, Attila  |m 1226773125:Gabor, Attila  |d 910000  |d 912900  |e 910000PG1226773125  |e 912900PG1226773125  |k 0/910000/  |k 1/910000/912900/  |p 3 
998 |g 1207289132  |a Trairatphisan, Panuwat  |m 1207289132:Trairatphisan, Panuwat  |p 2 
998 |g 1207289779  |a Gjerga, Enio  |m 1207289779:Gjerga, Enio  |p 1  |x j 
999 |a KXP-PPN1747797979  |e 3850102785 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedDisp":"09 June 2020","dateIssuedKey":"2020"}],"note":["Gesehen am 09.02.2021"],"title":[{"title":"Converting networks to predictive logic models from perturbation signalling data with CellNOpt","title_sort":"Converting networks to predictive logic models from perturbation signalling data with CellNOpt"}],"id":{"doi":["10.1093/bioinformatics/btaa561"],"eki":["1747797979"]},"relHost":[{"part":{"issue":"16","text":"36(2020), 16, Seite 4523-4524","pages":"4523-4524","year":"2020","volume":"36","extent":"2"},"titleAlt":[{"title":"Bioinformatics online"}],"language":["eng"],"id":{"eki":["266884857"],"zdb":["1468345-3"],"issn":["1367-4811"]},"recId":"266884857","physDesc":[{"extent":"Online-Ressource"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Converting networks to predictive logic models from perturbation signalling data with CellNOptBioinformatics","origin":[{"publisherPlace":"Oxford","dateIssuedKey":"1998","publisher":"Oxford Univ. Press","dateIssuedDisp":"1998-"}],"pubHistory":["14.1998 -"],"note":["Gesehen am 26.07.2023","Fortsetzung der Druck-Ausgabe"],"title":[{"title":"Bioinformatics","title_sort":"Bioinformatics"}]}],"recId":"1747797979","name":{"displayForm":["Enio Gjerga, Panuwat Trairatphisan, Attila Gabor, Hermann Koch, Celine Chevalier, Franceco Ceccarelli, Aurelien Dugourd, Alexander Mitsos and Julio Saez-Rodriguez"]},"physDesc":[{"extent":"2 S."}],"person":[{"family":"Gjerga","display":"Gjerga, Enio","role":"aut","given":"Enio"},{"family":"Trairatphisan","display":"Trairatphisan, Panuwat","role":"aut","given":"Panuwat"},{"role":"aut","given":"Attila","display":"Gabor, Attila","family":"Gabor"},{"family":"Koch","display":"Koch, Hermann","given":"Hermann","role":"aut"},{"role":"aut","given":"Celine","display":"Chevalier, Celine","family":"Chevalier"},{"family":"Ceccarelli","display":"Ceccarelli, Franceco","given":"Franceco","role":"aut"},{"role":"aut","given":"Aurélien","display":"Dugourd, Aurélien","family":"Dugourd"},{"display":"Mitsos, Alexander","family":"Mitsos","role":"aut","given":"Alexander"},{"given":"Julio","role":"aut","family":"Sáez Rodríguez","display":"Sáez Rodríguez, Julio"}],"language":["eng"]} 
SRT |a GJERGAENIOCONVERTING0920