Long-time shadow limit for a reaction-diffusion-ODE system

Shadow systems are an approximation of reaction-diffusion-type models with the largest diffusion coefficient tending to infinity. They are often used to reduce the model and facilitate its analysis. In this paper we extend the already existing finite time interval analysis to a case of very long tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kowall, Chris (VerfasserIn) , Marciniak-Czochra, Anna (VerfasserIn) , Mikelić, Andro (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2021
In: Applied mathematics letters
Year: 2021, Jahrgang: 112, Pages: 1-8
ISSN:1090-2090
DOI:10.1016/j.aml.2020.106790
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aml.2020.106790
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0893965920304018
Volltext
Verfasserangaben:Chris Kowall, Anna Marciniak-Czochra, Andro Mikelić
Beschreibung
Zusammenfassung:Shadow systems are an approximation of reaction-diffusion-type models with the largest diffusion coefficient tending to infinity. They are often used to reduce the model and facilitate its analysis. In this paper we extend the already existing finite time interval analysis to a case of very long time intervals, i.e., time intervals scaled with the diffusion coefficient and tending to infinity for diffusion tending to infinity. The approach is presented for a linear system of a reaction-diffusion equation coupled to ordinary differential equations but it can be extended to a semi-linear case or a classical reaction-diffusion system. In addition to the convergence result, we provide error estimates in terms of a power of the inverse of the diffusion coefficient.
Beschreibung:Gesehen am 16.02.2021
Available online 19 September 2020
Beschreibung:Online Resource
ISSN:1090-2090
DOI:10.1016/j.aml.2020.106790