Contextual neural gas for spatial clustering and analysis

This study aims to introduce contextual Neural Gas (CNG), a variant of the Neural Gas algorithm, which explicitly accounts for spatial dependencies within spatial data. The main idea of the CNG is to map spatially close observations to neurons, which are close with respect to their rank distance. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hagenauer, Julian Christian (VerfasserIn) , Helbich, Marco (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2013
In: International journal of geographical information science
Year: 2012, Jahrgang: 27, Heft: 2, Pages: 251-266
ISSN:1365-8824
DOI:10.1080/13658816.2012.667106
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1080/13658816.2012.667106
Volltext
Verfasserangaben:Julian Hagenauer and Marco Helbich

MARC

LEADER 00000caa a2200000 c 4500
001 1749061740
003 DE-627
005 20230427155521.0
007 cr uuu---uuuuu
008 210222r20132012xx |||||o 00| ||eng c
024 7 |a 10.1080/13658816.2012.667106  |2 doi 
035 |a (DE-627)1749061740 
035 |a (DE-599)KXP1749061740 
035 |a (OCoLC)1341395630 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Hagenauer, Julian Christian  |d 1980-  |e VerfasserIn  |0 (DE-588)1036794342  |0 (DE-627)751695610  |0 (DE-576)386858535  |4 aut 
245 1 0 |a Contextual neural gas for spatial clustering and analysis  |c Julian Hagenauer and Marco Helbich 
264 1 |c 2013 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online: 26 Apr 2012 
500 |a Gesehen am 23.02.2021 
520 |a This study aims to introduce contextual Neural Gas (CNG), a variant of the Neural Gas algorithm, which explicitly accounts for spatial dependencies within spatial data. The main idea of the CNG is to map spatially close observations to neurons, which are close with respect to their rank distance. Thus, spatial dependency is incorporated independently from the attribute values of the data. To discuss and compare the performance of the CNG and GeoSOM, this study draws from a series of experiments, which are based on two artificial and one real-world dataset. The experimental results of the artificial datasets show that the CNG produces more homogenous clusters, a better ratio of positional accuracy, and a lower quantization error than the GeoSOM. The results of the real-world dataset illustrate that the resulting patterns of the CNG are theoretically more sound and coherent than that of the GeoSOM, which emphasizes its applicability for geographic analysis tasks. 
534 |c 2012 
650 4 |a machine learning 
650 4 |a self-organizing maps 
650 4 |a spatial cluster analysis 
700 1 |a Helbich, Marco  |e VerfasserIn  |0 (DE-588)1036764575  |0 (DE-627)751688525  |0 (DE-576)386817537  |4 aut 
773 0 8 |i Enthalten in  |t International journal of geographical information science  |d London : Taylor & Francis, 1997  |g 27(2013), 2, Seite 251-266  |h Online-Ressource  |w (DE-627)302468676  |w (DE-600)1491393-8  |w (DE-576)079720056  |x 1365-8824  |7 nnas  |a Contextual neural gas for spatial clustering and analysis 
773 1 8 |g volume:27  |g year:2013  |g number:2  |g pages:251-266  |g extent:16  |a Contextual neural gas for spatial clustering and analysis 
856 4 0 |u https://doi.org/10.1080/13658816.2012.667106  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210222 
993 |a Article 
994 |a 2013 
998 |g 1036764575  |a Helbich, Marco  |m 1036764575:Helbich, Marco  |d 120000  |d 120700  |e 120000PH1036764575  |e 120700PH1036764575  |k 0/120000/  |k 1/120000/120700/  |p 2  |y j 
998 |g 1036794342  |a Hagenauer, Julian  |m 1036794342:Hagenauer, Julian  |d 120000  |e 120000PH1036794342  |k 0/120000/  |p 1  |x j 
999 |a KXP-PPN1749061740  |e 3869222190 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Published online: 26 Apr 2012","Gesehen am 23.02.2021"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1749061740","title":[{"title":"Contextual neural gas for spatial clustering and analysis","title_sort":"Contextual neural gas for spatial clustering and analysis"}],"person":[{"given":"Julian Christian","family":"Hagenauer","role":"aut","roleDisplay":"VerfasserIn","display":"Hagenauer, Julian Christian"},{"family":"Helbich","given":"Marco","roleDisplay":"VerfasserIn","display":"Helbich, Marco","role":"aut"}],"physDesc":[{"extent":"16 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["1491393-8"],"eki":["302468676"],"issn":["1365-8824"]},"origin":[{"publisherPlace":"London","dateIssuedDisp":"1997-","dateIssuedKey":"1997","publisher":"Taylor & Francis"}],"recId":"302468676","language":["eng"],"note":["Gesehen am 18.11.24"],"disp":"Contextual neural gas for spatial clustering and analysisInternational journal of geographical information science","type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"extent":"16","volume":"27","text":"27(2013), 2, Seite 251-266","pages":"251-266","issue":"2","year":"2013"},"titleAlt":[{"title":"IJGIS"}],"pubHistory":["11.1997 -"],"title":[{"title":"International journal of geographical information science","title_sort":"International journal of geographical information science"}]}],"origin":[{"dateIssuedDisp":"2013","dateIssuedKey":"2013"}],"id":{"doi":["10.1080/13658816.2012.667106"],"eki":["1749061740"]},"name":{"displayForm":["Julian Hagenauer and Marco Helbich"]}} 
SRT |a HAGENAUERJCONTEXTUAL2013