A statistical framework for assessing pharmacological responses and biomarkers using uncertainty estimates

High-throughput testing of drugs across molecular-characterised cell lines can identify candidate treatments and discover biomarkers. However, the cells’ response to a drug is typically quantified by a summary statistic from a best-fit dose-response curve, whilst neglecting the uncertainty of the cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wang, Dennis (VerfasserIn) , Hensman, James (VerfasserIn) , Kutkaite, Ginte (VerfasserIn) , Toh, Tzen S. (VerfasserIn) , Galhoz, Ana (VerfasserIn) , Dry, Jonathan R. (VerfasserIn) , Sáez Rodríguez, Julio (VerfasserIn) , Garnett, Mathew J. (VerfasserIn) , Menden, Michael (VerfasserIn) , Dondelinger, Frank (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 04 December 2020
In: eLife
Year: 2020, Jahrgang: 9, Pages: 1-21
ISSN:2050-084X
DOI:10.7554/eLife.60352
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.7554/eLife.60352
Volltext
Verfasserangaben:Dennis Wang, James Hensman, Ginte Kutkaite, Tzen S Toh, Ana Galhoz, GDSC Screening Team, Jonathan R Dry, Julio Saez-Rodriguez, Mathew J Garnett, Michael P Menden, Frank Dondelinger

MARC

LEADER 00000caa a2200000 c 4500
001 1749168081
003 DE-627
005 20230428020509.0
007 cr uuu---uuuuu
008 210223s2020 xx |||||o 00| ||eng c
024 7 |a 10.7554/eLife.60352  |2 doi 
035 |a (DE-627)1749168081 
035 |a (DE-599)KXP1749168081 
035 |a (OCoLC)1341395790 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Wang, Dennis  |e VerfasserIn  |0 (DE-588)1227954042  |0 (DE-627)1749169517  |4 aut 
245 1 2 |a A statistical framework for assessing pharmacological responses and biomarkers using uncertainty estimates  |c Dennis Wang, James Hensman, Ginte Kutkaite, Tzen S Toh, Ana Galhoz, GDSC Screening Team, Jonathan R Dry, Julio Saez-Rodriguez, Mathew J Garnett, Michael P Menden, Frank Dondelinger 
264 1 |c 04 December 2020 
300 |a 21 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 23.02.2021 
520 |a High-throughput testing of drugs across molecular-characterised cell lines can identify candidate treatments and discover biomarkers. However, the cells’ response to a drug is typically quantified by a summary statistic from a best-fit dose-response curve, whilst neglecting the uncertainty of the curve fit and the potential variability in the raw readouts. Here, we model the experimental variance using Gaussian Processes, and subsequently, leverage uncertainty estimates to identify associated biomarkers with a new Bayesian framework. Applied to in vitro screening data on 265 compounds across 1074 cancer cell lines, our models identified 24 clinically established drug-response biomarkers, and provided evidence for six novel biomarkers by accounting for association with low uncertainty. We validated our uncertainty estimates with an additional drug screen of 26 drugs, 10 cell lines with 8 to 9 replicates. Our method is applicable to any dose-response data without replicates, and improves biomarker discovery for precision medicine. 
650 4 |a biomarkers 
650 4 |a drug prediction 
650 4 |a machine learning 
650 4 |a pharmacogenomics 
650 4 |a statistical inference 
650 4 |a uncertainty estimation 
700 1 |a Hensman, James  |e VerfasserIn  |4 aut 
700 1 |a Kutkaite, Ginte  |e VerfasserIn  |4 aut 
700 1 |a Toh, Tzen S.  |e VerfasserIn  |4 aut 
700 1 |a Galhoz, Ana  |e VerfasserIn  |4 aut 
700 1 |a Dry, Jonathan R.  |e VerfasserIn  |4 aut 
700 1 |a Sáez Rodríguez, Julio  |d 1978-  |e VerfasserIn  |0 (DE-588)133764362  |0 (DE-627)555766632  |0 (DE-576)300083114  |4 aut 
700 1 |a Garnett, Mathew J.  |e VerfasserIn  |4 aut 
700 1 |a Menden, Michael  |e VerfasserIn  |0 (DE-588)1203168314  |0 (DE-627)1687989591  |4 aut 
700 1 |a Dondelinger, Frank  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t eLife  |d Cambridge : eLife Sciences Publications, 2012  |g 9(2020) Artikel-Nummer e60352, 21 Seiten  |h Online-Ressource  |w (DE-627)728518384  |w (DE-600)2687154-3  |w (DE-576)372567576  |x 2050-084X  |7 nnas  |a A statistical framework for assessing pharmacological responses and biomarkers using uncertainty estimates 
773 1 8 |g volume:9  |g year:2020  |g pages:1-21  |g extent:21  |a A statistical framework for assessing pharmacological responses and biomarkers using uncertainty estimates 
856 4 0 |u https://doi.org/10.7554/eLife.60352  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210223 
993 |a Article 
994 |a 2020 
998 |g 133764362  |a Sáez Rodríguez, Julio  |m 133764362:Sáez Rodríguez, Julio  |d 910000  |d 912900  |e 910000PS133764362  |e 912900PS133764362  |k 0/910000/  |k 1/910000/912900/  |p 7 
999 |a KXP-PPN1749168081  |e 3870831588 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"given":"Dennis","role":"aut","family":"Wang","display":"Wang, Dennis"},{"display":"Hensman, James","family":"Hensman","given":"James","role":"aut"},{"family":"Kutkaite","display":"Kutkaite, Ginte","given":"Ginte","role":"aut"},{"role":"aut","given":"Tzen S.","display":"Toh, Tzen S.","family":"Toh"},{"role":"aut","given":"Ana","display":"Galhoz, Ana","family":"Galhoz"},{"given":"Jonathan R.","role":"aut","family":"Dry","display":"Dry, Jonathan R."},{"given":"Julio","role":"aut","family":"Sáez Rodríguez","display":"Sáez Rodríguez, Julio"},{"family":"Garnett","display":"Garnett, Mathew J.","given":"Mathew J.","role":"aut"},{"display":"Menden, Michael","family":"Menden","given":"Michael","role":"aut"},{"given":"Frank","role":"aut","family":"Dondelinger","display":"Dondelinger, Frank"}],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 23.02.2021"],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"04 December 2020"}],"title":[{"title":"A statistical framework for assessing pharmacological responses and biomarkers using uncertainty estimates","title_sort":"statistical framework for assessing pharmacological responses and biomarkers using uncertainty estimates"}],"id":{"doi":["10.7554/eLife.60352"],"eki":["1749168081"]},"relHost":[{"disp":"A statistical framework for assessing pharmacological responses and biomarkers using uncertainty estimateseLife","type":{"bibl":"periodical","media":"Online-Ressource"},"origin":[{"publisherPlace":"Cambridge","dateIssuedDisp":"2012-","publisher":"eLife Sciences Publications","dateIssuedKey":"2012"}],"note":["Gesehen am 28.06.17"],"pubHistory":["1.2012 -"],"title":[{"title_sort":"eLife","title":"eLife"}],"id":{"zdb":["2687154-3"],"issn":["2050-084X"],"eki":["728518384"]},"recId":"728518384","physDesc":[{"extent":"Online-Ressource"}],"part":{"year":"2020","pages":"1-21","volume":"9","extent":"21","text":"9(2020) Artikel-Nummer e60352, 21 Seiten"},"titleAlt":[{"title":"eLife journal"}],"language":["eng"]}],"recId":"1749168081","name":{"displayForm":["Dennis Wang, James Hensman, Ginte Kutkaite, Tzen S Toh, Ana Galhoz, GDSC Screening Team, Jonathan R Dry, Julio Saez-Rodriguez, Mathew J Garnett, Michael P Menden, Frank Dondelinger"]},"physDesc":[{"extent":"21 S."}]} 
SRT |a WANGDENNISSTATISTICA0420