Skin lesions of face and scalp: classification by a market-approved convolutional neural network in comparison with 64 dermatologists
Background - The clinical differentiation of face and scalp lesions (FSLs) is challenging even for trained dermatologists. Studies comparing the diagnostic performance of a convolutional neural network (CNN) with dermatologists in FSL are lacking. - Methods - A market-approved CNN (Moleanalyzer-Pro,...
Gespeichert in:
| Hauptverfasser: | , , , , , , , , , , , , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2021
|
| In: |
European journal of cancer
Year: 2020, Jahrgang: 144, Pages: 192-199 |
| ISSN: | 1879-0852 |
| DOI: | 10.1016/j.ejca.2020.11.034 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.ejca.2020.11.034 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S095980492031371X |
| Verfasserangaben: | Holger Andreas Haenssle, Julia Katharina Winkler, Christine Fink, Ferdinand Toberer, Alexander Enk, Wilhelm Stolz, Teresa Deinlein, Rainer Hofmann-Wellenhof, Harald Kittler, Philipp Tschandl, Cliff Rosendahl, Aimilios Lallas, Andreas Blum, Mohamed Souhayel Abassi, Luc Thomas, Isabelle Tromme, Albert Rosenberger, reader study level-I and level-II groups Christina Alt |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1750179822 | ||
| 003 | DE-627 | ||
| 005 | 20240412193205.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210303r20212020xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.ejca.2020.11.034 |2 doi | |
| 035 | |a (DE-627)1750179822 | ||
| 035 | |a (DE-599)KXP1750179822 | ||
| 035 | |a (OCoLC)1341396566 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Hänßle, Holger |e VerfasserIn |0 (DE-588)1074971531 |0 (DE-627)832791733 |0 (DE-576)443174598 |4 aut | |
| 245 | 1 | 0 | |a Skin lesions of face and scalp |b classification by a market-approved convolutional neural network in comparison with 64 dermatologists |c Holger Andreas Haenssle, Julia Katharina Winkler, Christine Fink, Ferdinand Toberer, Alexander Enk, Wilhelm Stolz, Teresa Deinlein, Rainer Hofmann-Wellenhof, Harald Kittler, Philipp Tschandl, Cliff Rosendahl, Aimilios Lallas, Andreas Blum, Mohamed Souhayel Abassi, Luc Thomas, Isabelle Tromme, Albert Rosenberger, reader study level-I and level-II groups Christina Alt |
| 264 | 1 | |c 2021 | |
| 300 | |a 8 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Available online 25 December 2020 | ||
| 500 | |a Gesehen am 03.03.2021 | ||
| 520 | |a Background - The clinical differentiation of face and scalp lesions (FSLs) is challenging even for trained dermatologists. Studies comparing the diagnostic performance of a convolutional neural network (CNN) with dermatologists in FSL are lacking. - Methods - A market-approved CNN (Moleanalyzer-Pro, FotoFinder Systems) was used for binary classifications of 100 dermoscopic images of FSL. The same lesions were used in a two-level reader study including 64 dermatologists (level I: dermoscopy only; level II: dermoscopy, clinical close-up images, textual information). Primary endpoints were the CNN's sensitivity and specificity in comparison with the dermatologists' management decisions in level II. Generalizability of the CNN results was tested by using four additional external data sets. - Results - The CNN's sensitivity, specificity and ROC AUC were 96.2% [87.0%-98.9%], 68.8% [54.7%-80.1%] and 0.929 [0.880-0.978], respectively. In level II, the dermatologists' management decisions showed a mean sensitivity of 84.2% [82.2%-86.2%] and specificity of 69.4% [66.0%-72.8%]. When fixing the CNN's specificity at the dermatologists' mean specificity (69.4%), the CNN's sensitivity (96.2% [87.0%-98.9%]) was significantly higher than that of dermatologists (84.2% [82.2%-86.2%]; p < 0.001). Dermatologists of all training levels were outperformed by the CNN (all p < 0.001). In confirmation, the CNN's accuracy (83.0%) was significantly higher than dermatologists' accuracies in level II management decisions (all p < 0.001). The CNN's performance was largely confirmed in three additional external data sets but particularly showed a reduced specificity in one Australian data set including FSL on severely sun-damaged skin. - Conclusions - When applied as an assistant system, the CNN's higher sensitivity at an equivalent specificity may result in an improved early detection of face and scalp skin cancers. | ||
| 534 | |c 2020 | ||
| 650 | 4 | |a Actinic keratosis | |
| 650 | 4 | |a Basal cell carcinoma | |
| 650 | 4 | |a Deep learning | |
| 650 | 4 | |a Dermoscopy | |
| 650 | 4 | |a Lentigo maligna | |
| 650 | 4 | |a Melanoma | |
| 650 | 4 | |a Moleanalyzer-pro | |
| 650 | 4 | |a Neural network | |
| 650 | 4 | |a Seborrheic keratosis | |
| 650 | 4 | |a Skin cancer | |
| 650 | 4 | |a Solar lentigo | |
| 700 | 1 | |a Winkler, Julia K. |d 1987- |e VerfasserIn |0 (DE-588)1038218993 |0 (DE-627)756780721 |0 (DE-576)392196514 |4 aut | |
| 700 | 1 | |a Müller-Christmann, Christine |d 1983- |e VerfasserIn |0 (DE-588)143738127 |0 (DE-627)654330387 |0 (DE-576)338647651 |4 aut | |
| 700 | 1 | |a Toberer, Ferdinand |d 1981- |e VerfasserIn |0 (DE-588)102155832X |0 (DE-627)715821962 |0 (DE-576)362852367 |4 aut | |
| 700 | 1 | |a Enk, Alexander |d 1963- |e VerfasserIn |0 (DE-588)1032757140 |0 (DE-627)739272535 |0 (DE-576)166173517 |4 aut | |
| 700 | 1 | |a Stolz, Wilhelm |e VerfasserIn |4 aut | |
| 700 | 1 | |a Deinlein, Teresa |e VerfasserIn |4 aut | |
| 700 | 1 | |a Hofmann-Wellenhof, Rainer |e VerfasserIn |4 aut | |
| 700 | 1 | |a Kittler, Harald |e VerfasserIn |4 aut | |
| 700 | 1 | |a Tschandl, Philipp |e VerfasserIn |4 aut | |
| 700 | 1 | |a Rosendahl, Cliff |e VerfasserIn |4 aut | |
| 700 | 1 | |a Lallas, Aimilios |e VerfasserIn |4 aut | |
| 700 | 1 | |a Blum, Andreas |e VerfasserIn |4 aut | |
| 700 | 1 | |a Abassi, Mohamed Souhayel |e VerfasserIn |4 aut | |
| 700 | 1 | |a Thomas, Luc |e VerfasserIn |4 aut | |
| 700 | 1 | |a Tromme, Isabelle |e VerfasserIn |4 aut | |
| 700 | 1 | |a Alt, Christina |d 1989- |e VerfasserIn |0 (DE-588)1095566938 |0 (DE-627)85620028X |0 (DE-576)465025870 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t European journal of cancer |d Amsterdam [u.a.] : Elsevier, 1992 |g 144(2021), Seite 192-199 |w (DE-627)266883400 |w (DE-600)1468190-0 |w (DE-576)090954173 |x 1879-0852 |7 nnas |a Skin lesions of face and scalp classification by a market-approved convolutional neural network in comparison with 64 dermatologists |
| 773 | 1 | 8 | |g volume:144 |g year:2021 |g pages:192-199 |g extent:8 |a Skin lesions of face and scalp classification by a market-approved convolutional neural network in comparison with 64 dermatologists |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.ejca.2020.11.034 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S095980492031371X |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210303 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1095566938 |a Alt, Christina |m 1095566938:Alt, Christina |d 910000 |d 910200 |e 910000PA1095566938 |e 910200PA1095566938 |k 0/910000/ |k 1/910000/910200/ |p 17 |y j | ||
| 998 | |g 1032757140 |a Enk, Alexander |m 1032757140:Enk, Alexander |d 910000 |d 911300 |e 910000PE1032757140 |e 911300PE1032757140 |k 0/910000/ |k 1/910000/911300/ |p 5 | ||
| 998 | |g 102155832X |a Toberer, Ferdinand |m 102155832X:Toberer, Ferdinand |d 910000 |d 911300 |e 910000PT102155832X |e 911300PT102155832X |k 0/910000/ |k 1/910000/911300/ |p 4 | ||
| 998 | |g 143738127 |a Müller-Christmann, Christine |m 143738127:Müller-Christmann, Christine |d 910000 |d 911300 |d 50000 |e 910000PM143738127 |e 911300PM143738127 |e 50000PM143738127 |k 0/910000/ |k 1/910000/911300/ |k 0/50000/ |p 3 | ||
| 998 | |g 1038218993 |a Winkler, Julia K. |m 1038218993:Winkler, Julia K. |d 910000 |d 911300 |e 910000PW1038218993 |e 911300PW1038218993 |k 0/910000/ |k 1/910000/911300/ |p 2 | ||
| 998 | |g 1074971531 |a Hänßle, Holger |m 1074971531:Hänßle, Holger |d 910000 |d 911300 |e 910000PH1074971531 |e 911300PH1074971531 |k 0/910000/ |k 1/910000/911300/ |p 1 |x j | ||
| 999 | |a KXP-PPN1750179822 |e 3880639019 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"name":{"displayForm":["Holger Andreas Haenssle, Julia Katharina Winkler, Christine Fink, Ferdinand Toberer, Alexander Enk, Wilhelm Stolz, Teresa Deinlein, Rainer Hofmann-Wellenhof, Harald Kittler, Philipp Tschandl, Cliff Rosendahl, Aimilios Lallas, Andreas Blum, Mohamed Souhayel Abassi, Luc Thomas, Isabelle Tromme, Albert Rosenberger, reader study level-I and level-II groups Christina Alt"]},"id":{"eki":["1750179822"],"doi":["10.1016/j.ejca.2020.11.034"]},"physDesc":[{"extent":"8 S."}],"person":[{"role":"aut","display":"Hänßle, Holger","given":"Holger","family":"Hänßle"},{"given":"Julia K.","display":"Winkler, Julia K.","role":"aut","family":"Winkler"},{"given":"Christine","display":"Müller-Christmann, Christine","role":"aut","family":"Müller-Christmann"},{"role":"aut","display":"Toberer, Ferdinand","given":"Ferdinand","family":"Toberer"},{"family":"Enk","display":"Enk, Alexander","given":"Alexander","role":"aut"},{"family":"Stolz","role":"aut","given":"Wilhelm","display":"Stolz, Wilhelm"},{"family":"Deinlein","role":"aut","display":"Deinlein, Teresa","given":"Teresa"},{"family":"Hofmann-Wellenhof","role":"aut","display":"Hofmann-Wellenhof, Rainer","given":"Rainer"},{"family":"Kittler","role":"aut","display":"Kittler, Harald","given":"Harald"},{"family":"Tschandl","given":"Philipp","display":"Tschandl, Philipp","role":"aut"},{"family":"Rosendahl","display":"Rosendahl, Cliff","given":"Cliff","role":"aut"},{"role":"aut","given":"Aimilios","display":"Lallas, Aimilios","family":"Lallas"},{"given":"Andreas","display":"Blum, Andreas","role":"aut","family":"Blum"},{"family":"Abassi","display":"Abassi, Mohamed Souhayel","given":"Mohamed Souhayel","role":"aut"},{"display":"Thomas, Luc","given":"Luc","role":"aut","family":"Thomas"},{"family":"Tromme","role":"aut","display":"Tromme, Isabelle","given":"Isabelle"},{"role":"aut","given":"Christina","display":"Alt, Christina","family":"Alt"}],"title":[{"subtitle":"classification by a market-approved convolutional neural network in comparison with 64 dermatologists","title_sort":"Skin lesions of face and scalp","title":"Skin lesions of face and scalp"}],"origin":[{"dateIssuedDisp":"2021","dateIssuedKey":"2021"}],"note":["Available online 25 December 2020","Gesehen am 03.03.2021"],"relHost":[{"id":{"issn":["1879-0852"],"eki":["266883400"],"zdb":["1468190-0"]},"language":["eng"],"recId":"266883400","origin":[{"publisherPlace":"Amsterdam [u.a.] ; [Erscheinungsort nicht ermittelbar]","publisher":"Elsevier ; Pergamon Press","dateIssuedDisp":"1992-","dateIssuedKey":"1992"}],"note":["Gesehen am 21.03.24","Ungezählte Beil.: Supplement"],"pubHistory":["28.1992 -"],"title":[{"title_sort":"European journal of cancer","title":"European journal of cancer"}],"part":{"volume":"144","extent":"8","year":"2021","pages":"192-199","text":"144(2021), Seite 192-199"},"disp":"Skin lesions of face and scalp classification by a market-approved convolutional neural network in comparison with 64 dermatologistsEuropean journal of cancer","type":{"media":"Online-Ressource","bibl":"periodical"},"titleAlt":[{"title":"EJC online"}],"corporate":[{"role":"isb","display":"European Organization for Research on Treatment of Cancer"},{"role":"isb","display":"European Association for Cancer Research"},{"role":"isb","display":"European School of Oncology"}]}],"recId":"1750179822"} | ||
| SRT | |a HAENSSLEHOSKINLESION2021 | ||