The nonlinear Dirac equation in Bose-Einstein condensates: vortex solutions and spectra in a weak harmonic trap

We analyze the vortex solution space of the -dimensional nonlinear Dirac equation for bosons in a honeycomb optical lattice at length scales much larger than the lattice spacing. Dirac point relativistic covariance combined with s-wave scattering for bosons leads to a large number of vortex solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haddad, Laith H. (VerfasserIn) , Carr, Lincoln D. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 29 October 2015
In: New journal of physics
Year: 2015, Jahrgang: 17, Heft: 11, Pages: 1-25
ISSN:1367-2630
DOI:10.1088/1367-2630/17/11/113011
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1088/1367-2630/17/11/113011
Volltext
Verfasserangaben:L.H. Haddad and Lincoln D. Carr

MARC

LEADER 00000caa a2200000 c 4500
001 1750185970
003 DE-627
005 20220819124509.0
007 cr uuu---uuuuu
008 210303s2015 xx |||||o 00| ||eng c
024 7 |a 10.1088/1367-2630/17/11/113011  |2 doi 
035 |a (DE-627)1750185970 
035 |a (DE-599)KXP1750185970 
035 |a (OCoLC)1341396639 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Haddad, Laith H.  |e VerfasserIn  |0 (DE-588)1228442142  |0 (DE-627)1750185687  |4 aut 
245 1 4 |a The nonlinear Dirac equation in Bose-Einstein condensates  |b vortex solutions and spectra in a weak harmonic trap  |c L.H. Haddad and Lincoln D. Carr 
264 1 |c 29 October 2015 
300 |a 25 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 03.03.2021 
520 |a We analyze the vortex solution space of the -dimensional nonlinear Dirac equation for bosons in a honeycomb optical lattice at length scales much larger than the lattice spacing. Dirac point relativistic covariance combined with s-wave scattering for bosons leads to a large number of vortex solutions characterized by different functional forms for the internal spin and overall phase of the order parameter. We present a detailed derivation of these solutions which include skyrmions, half-quantum vortices, Mermin-Ho and Anderson-Toulouse vortices for vortex winding For we obtain topological as well as non-topological solutions defined by the asymptotic radial dependence. For arbitrary values of ℓ the non-topological solutions include bright ring-vortices which explicitly demonstrate the confining effects of the Dirac operator. We arrive at solutions through an asymptotic Bessel series, algebraic closed-forms, and using standard numerical shooting methods. By including a harmonic potential to simulate a finite trap we compute the discrete spectra associated with radially quantized modes. We demonstrate the continuous spectral mapping between the vortex and free particle limits for all of our solutions. 
700 1 |a Carr, Lincoln D.  |e VerfasserIn  |0 (DE-588)142813885  |0 (DE-627)704316900  |0 (DE-576)347893368  |4 aut 
773 0 8 |i Enthalten in  |t New journal of physics  |d [Bad Honnef] : Dt. Physikalische Ges., 1999  |g 17(2015), 11, Artikel-ID 113011, Seite 1-25  |h Online-Ressource  |w (DE-627)265510562  |w (DE-600)1464444-7  |w (DE-576)078991846  |x 1367-2630  |7 nnas  |a The nonlinear Dirac equation in Bose-Einstein condensates vortex solutions and spectra in a weak harmonic trap 
773 1 8 |g volume:17  |g year:2015  |g number:11  |g elocationid:113011  |g pages:1-25  |g extent:25  |a The nonlinear Dirac equation in Bose-Einstein condensates vortex solutions and spectra in a weak harmonic trap 
856 4 0 |u https://doi.org/10.1088/1367-2630/17/11/113011  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210303 
993 |a Article 
994 |a 2015 
998 |g 142813885  |a Carr, Lincoln D.  |m 142813885:Carr, Lincoln D.  |p 2  |y j 
999 |a KXP-PPN1750185970  |e 3880670463 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1750185970","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 03.03.2021"],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Haddad, Laith H.","given":"Laith H.","family":"Haddad"},{"given":"Lincoln D.","family":"Carr","role":"aut","display":"Carr, Lincoln D.","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"nonlinear Dirac equation in Bose-Einstein condensates","subtitle":"vortex solutions and spectra in a weak harmonic trap","title":"The nonlinear Dirac equation in Bose-Einstein condensates"}],"relHost":[{"name":{"displayForm":["Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics"]},"origin":[{"dateIssuedDisp":"1999-","dateIssuedKey":"1999","publisher":"Dt. Physikalische Ges. ; IOP","publisherPlace":"[Bad Honnef] ; [London]"}],"id":{"issn":["1367-2630"],"eki":["265510562"],"zdb":["1464444-7"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"New journal of physics","subtitle":"the open-access journal for physics","title_sort":"New journal of physics"}],"disp":"The nonlinear Dirac equation in Bose-Einstein condensates vortex solutions and spectra in a weak harmonic trapNew journal of physics","note":["Gesehen am 16.06.20"],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"265510562","corporate":[{"role":"isb","display":"Institute of Physics","roleDisplay":"Herausgebendes Organ"},{"roleDisplay":"Herausgebendes Organ","display":"Deutsche Physikalische Gesellschaft","role":"isb"}],"language":["eng"],"pubHistory":["1.1998/99(1999) -"],"part":{"text":"17(2015), 11, Artikel-ID 113011, Seite 1-25","volume":"17","extent":"25","year":"2015","issue":"11","pages":"1-25"}}],"physDesc":[{"extent":"25 S."}],"name":{"displayForm":["L.H. Haddad and Lincoln D. Carr"]},"id":{"doi":["10.1088/1367-2630/17/11/113011"],"eki":["1750185970"]},"origin":[{"dateIssuedDisp":"29 October 2015","dateIssuedKey":"2015"}]} 
SRT |a HADDADLAITNONLINEARD2920