The nonlinear Dirac equation in Bose-Einstein condensates: II. relativistic soliton stability analysis

The nonlinear Dirac equation for Bose–Einstein condensates (BECs) in honeycomb optical lattices gives rise to relativistic multi-component bright and dark soliton solutions. Using the relativistic linear stability equations, the relativistic generalization of the Boguliubov-de Gennes equations, we c...

Full description

Saved in:
Bibliographic Details
Main Authors: Haddad, Laith H. (Author) , Carr, Lincoln D. (Author)
Format: Article (Journal)
Language:English
Published: 25 June 2015
In: New journal of physics
Year: 2015, Volume: 17, Issue: 6, Pages: 1-22
ISSN:1367-2630
DOI:10.1088/1367-2630/17/6/063034
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1088/1367-2630/17/6/063034
Verlag, lizenzpflichtig, Volltext: https://iopscience.iop.org/article/10.1088/1367-2630/17/6/063034/meta
Get full text
Author Notes:L.H. Haddad and Lincoln D. Carr

MARC

LEADER 00000caa a2200000 c 4500
001 1750196972
003 DE-627
005 20220819124741.0
007 cr uuu---uuuuu
008 210303s2015 xx |||||o 00| ||eng c
024 7 |a 10.1088/1367-2630/17/6/063034  |2 doi 
035 |a (DE-627)1750196972 
035 |a (DE-599)KXP1750196972 
035 |a (OCoLC)1341396853 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Haddad, Laith H.  |e VerfasserIn  |0 (DE-588)1228442142  |0 (DE-627)1750185687  |4 aut 
245 1 4 |a The nonlinear Dirac equation in Bose-Einstein condensates  |b II. relativistic soliton stability analysis  |c L.H. Haddad and Lincoln D. Carr 
264 1 |c 25 June 2015 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 03.03.2021 
520 |a The nonlinear Dirac equation for Bose–Einstein condensates (BECs) in honeycomb optical lattices gives rise to relativistic multi-component bright and dark soliton solutions. Using the relativistic linear stability equations, the relativistic generalization of the Boguliubov-de Gennes equations, we compute soliton lifetimes against quantum fluctuations and classify the different excitation types. For a BEC of 87Rb atoms, we find that oursoliton solutions are stable on time scales relevant to experiments. Excitations in the bulk region far from the core of asoliton and bound states in the core are classified as either spin waves or as a Nambu–Goldstone mode. Thus, solitons are topologically distinct pseudospin-1 2 domain walls between polarized regions of Sz = ±1 2. Numerical analysis in the presence of a harmonic trap potential reveals a discrete spectrum reflecting the number of bright soliton peaks or dark soliton notches in the condensate background. For each quantized mode the chemical potential versus nonlinearity exhibits two distinct power law regimes corresponding to the free-particle (weakly nonlinear) and soliton (strongly nonlinear) limits. 
700 1 |a Carr, Lincoln D.  |e VerfasserIn  |0 (DE-588)142813885  |0 (DE-627)704316900  |0 (DE-576)347893368  |4 aut 
773 0 8 |i Enthalten in  |t New journal of physics  |d [Bad Honnef] : Dt. Physikalische Ges., 1999  |g 17(2015), 6, Artikel-ID 063034, Seite 1-22  |h Online-Ressource  |w (DE-627)265510562  |w (DE-600)1464444-7  |w (DE-576)078991846  |x 1367-2630  |7 nnas  |a The nonlinear Dirac equation in Bose-Einstein condensates II. relativistic soliton stability analysis 
773 1 8 |g volume:17  |g year:2015  |g number:6  |g elocationid:063034  |g pages:1-22  |g extent:22  |a The nonlinear Dirac equation in Bose-Einstein condensates II. relativistic soliton stability analysis 
856 4 0 |u https://doi.org/10.1088/1367-2630/17/6/063034  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://iopscience.iop.org/article/10.1088/1367-2630/17/6/063034/meta  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210303 
993 |a Article 
994 |a 2015 
998 |g 142813885  |a Carr, Lincoln D.  |m 142813885:Carr, Lincoln D.  |p 2  |y j 
999 |a KXP-PPN1750196972  |e 3880694338 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 03.03.2021"],"recId":"1750196972","language":["eng"],"title":[{"title":"The nonlinear Dirac equation in Bose-Einstein condensates","subtitle":"II. relativistic soliton stability analysis","title_sort":"nonlinear Dirac equation in Bose-Einstein condensates"}],"person":[{"family":"Haddad","given":"Laith H.","display":"Haddad, Laith H.","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Carr, Lincoln D.","given":"Lincoln D.","family":"Carr"}],"physDesc":[{"extent":"22 S."}],"relHost":[{"title":[{"title_sort":"New journal of physics","subtitle":"the open-access journal for physics","title":"New journal of physics"}],"disp":"The nonlinear Dirac equation in Bose-Einstein condensates II. relativistic soliton stability analysisNew journal of physics","note":["Gesehen am 16.06.20"],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"265510562","corporate":[{"display":"Institute of Physics","roleDisplay":"Herausgebendes Organ","role":"isb"},{"display":"Deutsche Physikalische Gesellschaft","roleDisplay":"Herausgebendes Organ","role":"isb"}],"language":["eng"],"pubHistory":["1.1998/99(1999) -"],"part":{"volume":"17","text":"17(2015), 6, Artikel-ID 063034, Seite 1-22","extent":"22","year":"2015","issue":"6","pages":"1-22"},"name":{"displayForm":["Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics"]},"origin":[{"publisherPlace":"[Bad Honnef] ; [London]","dateIssuedDisp":"1999-","dateIssuedKey":"1999","publisher":"Dt. Physikalische Ges. ; IOP"}],"id":{"issn":["1367-2630"],"eki":["265510562"],"zdb":["1464444-7"]},"physDesc":[{"extent":"Online-Ressource"}]}],"origin":[{"dateIssuedKey":"2015","dateIssuedDisp":"25 June 2015"}],"id":{"eki":["1750196972"],"doi":["10.1088/1367-2630/17/6/063034"]},"name":{"displayForm":["L.H. Haddad and Lincoln D. Carr"]}} 
SRT |a HADDADLAITNONLINEARD2520