2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma

For treatment individualisation of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) treated with primary radiochemotherapy, we explored the capabilities of different deep learning approaches for predicting loco-regional tumour control (LRC) from treatment-planning compute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Starke, Sebastian (VerfasserIn) , Leger, Stefan (VerfasserIn) , Zwanenburg, Alex (VerfasserIn) , Leger, Karoline (VerfasserIn) , Lohaus, Fabian (VerfasserIn) , Linge, Annett (VerfasserIn) , Schreiber, Andreas (VerfasserIn) , Kalinauskaite, Goda (VerfasserIn) , Tinhofer, Inge (VerfasserIn) , Guberina, Nika (VerfasserIn) , Guberina, Maja (VerfasserIn) , Balermpas, Panagiotis (VerfasserIn) , von der Grün, Jens (VerfasserIn) , Ganswindt, Ute (VerfasserIn) , Belka, Claus (VerfasserIn) , Peeken, Jan C. (VerfasserIn) , Combs, Stephanie E. (VerfasserIn) , Boeke, Simon (VerfasserIn) , Zips, Daniel (VerfasserIn) , Richter, Christian (VerfasserIn) , Troost, Esther G. C. (VerfasserIn) , Krause, Mechthild (VerfasserIn) , Baumann, Michael (VerfasserIn) , Löck, Steffen (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 24 September 2020
In: Scientific reports
Year: 2020, Jahrgang: 10, Pages: 1-13
ISSN:2045-2322
DOI:10.1038/s41598-020-70542-9
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41598-020-70542-9
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41598-020-70542-9
Volltext
Verfasserangaben:Sebastian Starke, Stefan Leger, Alex Zwanenburg, Karoline Leger, Fabian Lohaus, Annett Linge, Andreas Schreiber, Goda Kalinauskaite, Inge Tinhofer, Nika Guberina, Maja Guberina, Panagiotis Balermpas, Jens von der Grün, Ute Ganswindt, Claus Belka, Jan C. Peeken, Stephanie E. Combs, Simon Boeke, Daniel Zips, Christian Richter, Esther G. C. Troost, Mechthild Krause, Michael Baumann, Steffen Löck

MARC

LEADER 00000caa a2200000 c 4500
001 1750396866
003 DE-627
005 20220819125715.0
007 cr uuu---uuuuu
008 210304s2020 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41598-020-70542-9  |2 doi 
035 |a (DE-627)1750396866 
035 |a (DE-599)KXP1750396866 
035 |a (OCoLC)1341397109 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 32  |2 sdnb 
100 1 |a Starke, Sebastian  |e VerfasserIn  |0 (DE-588)1228557764  |0 (DE-627)1750399857  |4 aut 
245 1 0 |a 2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma  |c Sebastian Starke, Stefan Leger, Alex Zwanenburg, Karoline Leger, Fabian Lohaus, Annett Linge, Andreas Schreiber, Goda Kalinauskaite, Inge Tinhofer, Nika Guberina, Maja Guberina, Panagiotis Balermpas, Jens von der Grün, Ute Ganswindt, Claus Belka, Jan C. Peeken, Stephanie E. Combs, Simon Boeke, Daniel Zips, Christian Richter, Esther G. C. Troost, Mechthild Krause, Michael Baumann, Steffen Löck 
246 3 3 |a Two D and three D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma 
264 1 |c 24 September 2020 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 04.03.2021 
520 |a For treatment individualisation of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) treated with primary radiochemotherapy, we explored the capabilities of different deep learning approaches for predicting loco-regional tumour control (LRC) from treatment-planning computed tomography images. Based on multicentre cohorts for exploration (206 patients) and independent validation (85 patients), multiple deep learning strategies including training of 3D- and 2D-convolutional neural networks (CNN) from scratch, transfer learning and extraction of deep autoencoder features were assessed and compared to a clinical model. Analyses were based on Cox proportional hazards regression and model performances were assessed by the concordance index (C-index) and the model’s ability to stratify patients based on predicted hazards of LRC. Among all models, an ensemble of 3D-CNNs achieved the best performance (C-index 0.31) with a significant association to LRC on the independent validation cohort. It performed better than the clinical model including the tumour volume (C-index 0.39). Significant differences in LRC were observed between patient groups at low or high risk of tumour recurrence as predicted by the model ($$p=0.001$$). This 3D-CNN ensemble will be further evaluated in a currently ongoing prospective validation study once follow-up is complete. 
700 1 |a Leger, Stefan  |e VerfasserIn  |4 aut 
700 1 |a Zwanenburg, Alex  |e VerfasserIn  |4 aut 
700 1 |a Leger, Karoline  |e VerfasserIn  |4 aut 
700 1 |a Lohaus, Fabian  |e VerfasserIn  |4 aut 
700 1 |a Linge, Annett  |e VerfasserIn  |4 aut 
700 1 |a Schreiber, Andreas  |e VerfasserIn  |4 aut 
700 1 |a Kalinauskaite, Goda  |e VerfasserIn  |4 aut 
700 1 |a Tinhofer, Inge  |e VerfasserIn  |4 aut 
700 1 |a Guberina, Nika  |e VerfasserIn  |4 aut 
700 1 |a Guberina, Maja  |e VerfasserIn  |4 aut 
700 1 |a Balermpas, Panagiotis  |e VerfasserIn  |4 aut 
700 1 |a von der Grün, Jens  |e VerfasserIn  |4 aut 
700 1 |a Ganswindt, Ute  |e VerfasserIn  |4 aut 
700 1 |a Belka, Claus  |e VerfasserIn  |4 aut 
700 1 |a Peeken, Jan C.  |e VerfasserIn  |4 aut 
700 1 |a Combs, Stephanie E.  |e VerfasserIn  |4 aut 
700 1 |a Boeke, Simon  |e VerfasserIn  |4 aut 
700 1 |a Zips, Daniel  |e VerfasserIn  |4 aut 
700 1 |a Richter, Christian  |e VerfasserIn  |4 aut 
700 1 |a Troost, Esther G. C.  |e VerfasserIn  |4 aut 
700 1 |a Krause, Mechthild  |e VerfasserIn  |4 aut 
700 1 |a Baumann, Michael  |d 1962-  |e VerfasserIn  |0 (DE-588)131385399  |0 (DE-627)508500222  |0 (DE-576)298443244  |4 aut 
700 1 |a Löck, Steffen  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Scientific reports  |d [London] : Springer Nature, 2011  |g 10(2020), Artikel-ID 15625, Seite 1-13  |h Online-Ressource  |w (DE-627)663366712  |w (DE-600)2615211-3  |w (DE-576)346641179  |x 2045-2322  |7 nnas  |a 2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma 
773 1 8 |g volume:10  |g year:2020  |g elocationid:15625  |g pages:1-13  |g extent:13  |a 2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma 
856 4 0 |u https://doi.org/10.1038/s41598-020-70542-9  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41598-020-70542-9  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210304 
993 |a Article 
994 |a 2020 
998 |g 131385399  |a Baumann, Michael  |m 131385399:Baumann, Michael  |d 50000  |e 50000PB131385399  |k 0/50000/  |p 23 
999 |a KXP-PPN1750396866  |e 3881396586 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 04.03.2021"],"titleAlt":[{"title":"Two D and three D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma"}],"relHost":[{"id":{"zdb":["2615211-3"],"issn":["2045-2322"],"eki":["663366712"]},"origin":[{"publisher":"Springer Nature ; Nature Publishing Group","dateIssuedKey":"2011","dateIssuedDisp":"2011-","publisherPlace":"[London] ; London"}],"part":{"extent":"13","text":"10(2020), Artikel-ID 15625, Seite 1-13","pages":"1-13","volume":"10","year":"2020"},"recId":"663366712","disp":"2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinomaScientific reports","title":[{"title_sort":"Scientific reports","title":"Scientific reports"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 12.07.24"],"pubHistory":["1, article number 1 (2011)-"],"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"]}],"person":[{"given":"Sebastian","role":"aut","family":"Starke","display":"Starke, Sebastian"},{"family":"Leger","given":"Stefan","role":"aut","display":"Leger, Stefan"},{"family":"Zwanenburg","role":"aut","given":"Alex","display":"Zwanenburg, Alex"},{"role":"aut","given":"Karoline","family":"Leger","display":"Leger, Karoline"},{"display":"Lohaus, Fabian","role":"aut","given":"Fabian","family":"Lohaus"},{"display":"Linge, Annett","given":"Annett","role":"aut","family":"Linge"},{"family":"Schreiber","role":"aut","given":"Andreas","display":"Schreiber, Andreas"},{"role":"aut","given":"Goda","family":"Kalinauskaite","display":"Kalinauskaite, Goda"},{"given":"Inge","role":"aut","family":"Tinhofer","display":"Tinhofer, Inge"},{"display":"Guberina, Nika","family":"Guberina","role":"aut","given":"Nika"},{"display":"Guberina, Maja","family":"Guberina","role":"aut","given":"Maja"},{"role":"aut","given":"Panagiotis","family":"Balermpas","display":"Balermpas, Panagiotis"},{"display":"von der Grün, Jens","role":"aut","given":"Jens","family":"von der Grün"},{"display":"Ganswindt, Ute","family":"Ganswindt","role":"aut","given":"Ute"},{"display":"Belka, Claus","given":"Claus","role":"aut","family":"Belka"},{"given":"Jan C.","role":"aut","family":"Peeken","display":"Peeken, Jan C."},{"family":"Combs","given":"Stephanie E.","role":"aut","display":"Combs, Stephanie E."},{"role":"aut","given":"Simon","family":"Boeke","display":"Boeke, Simon"},{"given":"Daniel","role":"aut","family":"Zips","display":"Zips, Daniel"},{"display":"Richter, Christian","role":"aut","given":"Christian","family":"Richter"},{"display":"Troost, Esther G. C.","role":"aut","given":"Esther G. C.","family":"Troost"},{"display":"Krause, Mechthild","family":"Krause","role":"aut","given":"Mechthild"},{"display":"Baumann, Michael","given":"Michael","role":"aut","family":"Baumann"},{"role":"aut","given":"Steffen","family":"Löck","display":"Löck, Steffen"}],"title":[{"title_sort":"2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma","title":"2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma"}],"language":["eng"],"physDesc":[{"extent":"13 S."}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1750396866"],"doi":["10.1038/s41598-020-70542-9"]},"origin":[{"dateIssuedDisp":"24 September 2020","dateIssuedKey":"2020"}],"name":{"displayForm":["Sebastian Starke, Stefan Leger, Alex Zwanenburg, Karoline Leger, Fabian Lohaus, Annett Linge, Andreas Schreiber, Goda Kalinauskaite, Inge Tinhofer, Nika Guberina, Maja Guberina, Panagiotis Balermpas, Jens von der Grün, Ute Ganswindt, Claus Belka, Jan C. Peeken, Stephanie E. Combs, Simon Boeke, Daniel Zips, Christian Richter, Esther G. C. Troost, Mechthild Krause, Michael Baumann, Steffen Löck"]},"recId":"1750396866"} 
SRT |a STARKESEBA2DAND3DCON2420