Deep transfer learning for star cluster classification: I. application to the PHANGS-HST survey

We present the results of a proof-of-concept experiment that demonstrates that deep learning can successfully be used for production-scale classification of compact star clusters detected in Hubble Space Telescope(HST) ultraviolet-optical imaging of nearby spiral galaxies ($D\lesssim 20\, \textrm{Mp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wei, Wei (VerfasserIn) , Huerta, E A (VerfasserIn) , Whitmore, Bradley C (VerfasserIn) , Lee, Janice C (VerfasserIn) , Hannon, Stephen (VerfasserIn) , Chandar, Rupali (VerfasserIn) , Dale, Daniel A (VerfasserIn) , Larson, Kirsten L (VerfasserIn) , Thilker, David A (VerfasserIn) , Ubeda, Leonardo (VerfasserIn) , Boquien, Médéric (VerfasserIn) , Chevance, Mélanie (VerfasserIn) , Kruijssen, Diederik (VerfasserIn) , Schruba, Andreas (VerfasserIn) , Blanc, Guillermo A. (VerfasserIn) , Congiu, Enrico (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 04 February 2020
In: Monthly notices of the Royal Astronomical Society
Year: 2020, Jahrgang: 493, Heft: 3, Pages: 3178-3193
ISSN:1365-2966
DOI:10.1093/mnras/staa325
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/mnras/staa325
Volltext
Verfasserangaben:Wei Wei, E A Huerta, Bradley C Whitmore, Janice C Lee, Stephen Hannon, Rupali Chandar, Daniel A Dale, Kirsten L Larson, David A Thilker, Leonardo Ubeda, Médéric Boquien, Mélanie Chevance, J M Diederik Kruijssen, Andreas Schruba, Guillermo A Blanc, Enrico Congiu

MARC

LEADER 00000caa a2200000 c 4500
001 1751144305
003 DE-627
005 20220819133637.0
007 cr uuu---uuuuu
008 210311s2020 xx |||||o 00| ||eng c
024 7 |a 10.1093/mnras/staa325  |2 doi 
035 |a (DE-627)1751144305 
035 |a (DE-599)KXP1751144305 
035 |a (OCoLC)1341398456 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Wei, Wei  |e VerfasserIn  |0 (DE-588)1171341555  |0 (DE-627)1040484093  |0 (DE-576)51369188X  |4 aut 
245 1 0 |a Deep transfer learning for star cluster classification  |b I. application to the PHANGS-HST survey  |c Wei Wei, E A Huerta, Bradley C Whitmore, Janice C Lee, Stephen Hannon, Rupali Chandar, Daniel A Dale, Kirsten L Larson, David A Thilker, Leonardo Ubeda, Médéric Boquien, Mélanie Chevance, J M Diederik Kruijssen, Andreas Schruba, Guillermo A Blanc, Enrico Congiu 
264 1 |c 04 February 2020 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 11.03.2021 
520 |a We present the results of a proof-of-concept experiment that demonstrates that deep learning can successfully be used for production-scale classification of compact star clusters detected in Hubble Space Telescope(HST) ultraviolet-optical imaging of nearby spiral galaxies ($D\lesssim 20\, \textrm{Mpc}$) in the Physics at High Angular Resolution in Nearby GalaxieS (PHANGS)-HST survey. Given the relatively small nature of existing, human-labelled star cluster samples, we transfer the knowledge of state-of-the-art neural network models for real-object recognition to classify star clusters candidates into four morphological classes. We perform a series of experiments to determine the dependence of classification performance on neural network architecture (ResNet18 and VGG19-BN), training data sets curated by either a single expert or three astronomers, and the size of the images used for training. We find that the overall classification accuracies are not significantly affected by these choices. The networks are used to classify star cluster candidates in the PHANGS-HST galaxy NGC 1559, which was not included in the training samples. The resulting prediction accuracies are 70 per cent, 40 per cent, 40-50 per cent, and 50-70 per cent for class 1, 2, 3 star clusters, and class 4 non-clusters, respectively. This performance is competitive with consistency achieved in previously published human and automated quantitative classification of star cluster candidate samples (70-80 per cent, 40-50 per cent, 40-50 per cent, and 60-70 per cent). The methods introduced herein lay the foundations to automate classification for star clusters at scale, and exhibit the need to prepare a standardized data set of human-labelled star cluster classifications, agreed upon by a full range of experts in the field, to further improve the performance of the networks introduced in this study. 
700 1 |a Huerta, E A  |e VerfasserIn  |4 aut 
700 1 |a Whitmore, Bradley C  |e VerfasserIn  |4 aut 
700 1 |a Lee, Janice C  |e VerfasserIn  |4 aut 
700 1 |a Hannon, Stephen  |e VerfasserIn  |0 (DE-588)1204494827  |0 (DE-627)1689848294  |4 aut 
700 1 |a Chandar, Rupali  |e VerfasserIn  |4 aut 
700 1 |a Dale, Daniel A  |e VerfasserIn  |4 aut 
700 1 |a Larson, Kirsten L  |e VerfasserIn  |4 aut 
700 1 |a Thilker, David A  |e VerfasserIn  |4 aut 
700 1 |a Ubeda, Leonardo  |e VerfasserIn  |4 aut 
700 1 |a Boquien, Médéric  |e VerfasserIn  |4 aut 
700 1 |a Chevance, Mélanie  |e VerfasserIn  |0 (DE-588)1141805553  |0 (DE-627)1000759342  |0 (DE-576)470814411  |4 aut 
700 1 |a Kruijssen, Diederik  |e VerfasserIn  |0 (DE-588)1097786889  |0 (DE-627)857371215  |0 (DE-576)468950656  |4 aut 
700 1 |a Schruba, Andreas  |e VerfasserIn  |0 (DE-588)1024744558  |0 (DE-627)720442524  |0 (DE-576)369428897  |4 aut 
700 1 |a Blanc, Guillermo A.  |e VerfasserIn  |0 (DE-588)1170722881  |0 (DE-627)1039893074  |0 (DE-576)512621640  |4 aut 
700 1 |a Congiu, Enrico  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |a Royal Astronomical Society  |t Monthly notices of the Royal Astronomical Society  |d Oxford : Oxford Univ. Press, 1827  |g 493(2020), 3, Seite 3178-3193  |h Online-Ressource  |w (DE-627)314059164  |w (DE-600)2016084-7  |w (DE-576)090955420  |x 1365-2966  |7 nnas 
773 1 8 |g volume:493  |g year:2020  |g number:3  |g pages:3178-3193  |g extent:16  |a Deep transfer learning for star cluster classification I. application to the PHANGS-HST survey 
856 4 0 |u https://doi.org/10.1093/mnras/staa325  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210311 
993 |a Article 
994 |a 2020 
998 |g 1097786889  |a Kruijssen, Diederik  |m 1097786889:Kruijssen, Diederik  |d 700000  |d 714000  |d 714100  |e 700000PK1097786889  |e 714000PK1097786889  |e 714100PK1097786889  |k 0/700000/  |k 1/700000/714000/  |k 2/700000/714000/714100/  |p 13 
998 |g 1141805553  |a Chevance, Mélanie  |m 1141805553:Chevance, Mélanie  |d 700000  |d 714000  |d 714100  |e 700000PC1141805553  |e 714000PC1141805553  |e 714100PC1141805553  |k 0/700000/  |k 1/700000/714000/  |k 2/700000/714000/714100/  |p 12 
999 |a KXP-PPN1751144305  |e 3884814826 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Wei Wei, E A Huerta, Bradley C Whitmore, Janice C Lee, Stephen Hannon, Rupali Chandar, Daniel A Dale, Kirsten L Larson, David A Thilker, Leonardo Ubeda, Médéric Boquien, Mélanie Chevance, J M Diederik Kruijssen, Andreas Schruba, Guillermo A Blanc, Enrico Congiu"]},"recId":"1751144305","note":["Gesehen am 11.03.2021"],"origin":[{"dateIssuedDisp":"04 February 2020","dateIssuedKey":"2020"}],"person":[{"given":"Wei","family":"Wei","role":"aut","display":"Wei, Wei"},{"display":"Huerta, E A","role":"aut","family":"Huerta","given":"E A"},{"family":"Whitmore","given":"Bradley C","display":"Whitmore, Bradley C","role":"aut"},{"family":"Lee","given":"Janice C","display":"Lee, Janice C","role":"aut"},{"given":"Stephen","family":"Hannon","role":"aut","display":"Hannon, Stephen"},{"display":"Chandar, Rupali","role":"aut","family":"Chandar","given":"Rupali"},{"display":"Dale, Daniel A","role":"aut","family":"Dale","given":"Daniel A"},{"display":"Larson, Kirsten L","role":"aut","family":"Larson","given":"Kirsten L"},{"given":"David A","family":"Thilker","role":"aut","display":"Thilker, David A"},{"display":"Ubeda, Leonardo","role":"aut","family":"Ubeda","given":"Leonardo"},{"family":"Boquien","given":"Médéric","display":"Boquien, Médéric","role":"aut"},{"family":"Chevance","given":"Mélanie","display":"Chevance, Mélanie","role":"aut"},{"family":"Kruijssen","given":"Diederik","display":"Kruijssen, Diederik","role":"aut"},{"role":"aut","display":"Schruba, Andreas","given":"Andreas","family":"Schruba"},{"given":"Guillermo A.","family":"Blanc","role":"aut","display":"Blanc, Guillermo A."},{"given":"Enrico","family":"Congiu","role":"aut","display":"Congiu, Enrico"}],"language":["eng"],"physDesc":[{"extent":"16 S."}],"id":{"eki":["1751144305"],"doi":["10.1093/mnras/staa325"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title_sort":"Deep transfer learning for star cluster classification","title":"Deep transfer learning for star cluster classification","subtitle":"I. application to the PHANGS-HST survey"}],"relHost":[{"corporate":[{"role":"aut","display":"Royal Astronomical Society"}],"note":["Gesehen am 15.01.2018"],"disp":"Royal Astronomical SocietyMonthly notices of the Royal Astronomical Society","physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Monthly notices of the Royal Astronomical Society","title_sort":"Monthly notices of the Royal Astronomical Society"}],"language":["eng"],"origin":[{"publisherPlace":"Oxford ; Oxford [u.a.] ; Oxford [u.a.]","dateIssuedKey":"1827","publisher":"Oxford Univ. Press ; Blackwell ; Wiley-Blackwell","dateIssuedDisp":"1827-"}],"recId":"314059164","id":{"eki":["314059164"],"doi":["10.1111/(ISSN)1365-2966"],"zdb":["2016084-7"],"issn":["1365-2966"]},"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"text":"493(2020), 3, Seite 3178-3193","issue":"3","pages":"3178-3193","year":"2020","extent":"16","volume":"493"},"pubHistory":["1.1827 -"]}]} 
SRT |a WEIWEIHUERDEEPTRANSF0420