Locally bound-preserving enriched Galerkin methods for the linear advection equation

In this work, we introduce algebraic flux correction schemes for enriched (P1⊕P0 and Q1⊕P0) Galerkin discretizations of the linear advection equation. The piecewise-constant component stabilizes the continuous Galerkin approximation without introducing free parameters. However, violations of discret...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kuzmin, D. (VerfasserIn) , Hajduk, Hennes (VerfasserIn) , Rupp, Andreas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 14 April 2020
In: Computers & fluids
Year: 2020, Jahrgang: 205, Pages: 1-15
ISSN:1879-0747
DOI:10.1016/j.compfluid.2020.104525
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.compfluid.2020.104525
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0045793020300992
Volltext
Verfasserangaben:Dmitri Kuzmin, Hennes Hajduk, Andreas Rupp

MARC

LEADER 00000caa a2200000 c 4500
001 1752007077
003 DE-627
005 20220819141611.0
007 cr uuu---uuuuu
008 210322s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.compfluid.2020.104525  |2 doi 
035 |a (DE-627)1752007077 
035 |a (DE-599)KXP1752007077 
035 |a (OCoLC)1341400655 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Kuzmin, D.  |d 1974-  |e VerfasserIn  |0 (DE-588)1011171775  |0 (DE-627)658048880  |0 (DE-576)34106016X  |4 aut 
245 1 0 |a Locally bound-preserving enriched Galerkin methods for the linear advection equation  |c Dmitri Kuzmin, Hennes Hajduk, Andreas Rupp 
264 1 |c 14 April 2020 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 22.03.2021 
520 |a In this work, we introduce algebraic flux correction schemes for enriched (P1⊕P0 and Q1⊕P0) Galerkin discretizations of the linear advection equation. The piecewise-constant component stabilizes the continuous Galerkin approximation without introducing free parameters. However, violations of discrete maximum principles are possible in the neighborhood of discontinuities and steep fronts. To keep the cell averages and the degrees of freedom of the continuous P1/Q1 component in the admissible range, we limit the fluxes and element contributions, the complete removal of which would correspond to first-order upwinding. The first limiting procedure that we consider in this paper is based on the flux-corrected transport (FCT) paradigm. It belongs to the family of predictor-corrector algorithms and requires the use of small time steps. The second limiting strategy is monolithic and produces nonlinear problems with well-defined residuals. This kind of limiting is well suited for stationary and time-dependent problems alike. The need for inverting consistent mass matrices in explicit strong stability preserving Runge-Kutta time integrators is avoided by reconstructing nodal time derivatives from cell averages. Numerical studies are performed for standard 2D test problems. 
650 4 |a Convex limiting 
650 4 |a Discrete maximum principles 
650 4 |a Enriched Galerkin method 
650 4 |a Flux-corrected transport 
650 4 |a Linear advection equation 
700 1 |a Hajduk, Hennes  |d 1992-  |e VerfasserIn  |0 (DE-588)1182436048  |0 (DE-627)1662744749  |4 aut 
700 1 |a Rupp, Andreas  |d 1992-  |e VerfasserIn  |0 (DE-588)1191198812  |0 (DE-627)1669602907  |4 aut 
773 0 8 |i Enthalten in  |t Computers & fluids  |d Amsterdam [u.a.] : Elsevier Science, 1973  |g 205(2020), Artikel-ID 104525, Seite 1-15  |h Online-Ressource  |w (DE-627)306654938  |w (DE-600)1499975-4  |w (DE-576)094531250  |x 1879-0747  |7 nnas  |a Locally bound-preserving enriched Galerkin methods for the linear advection equation 
773 1 8 |g volume:205  |g year:2020  |g elocationid:104525  |g pages:1-15  |g extent:15  |a Locally bound-preserving enriched Galerkin methods for the linear advection equation 
856 4 0 |u https://doi.org/10.1016/j.compfluid.2020.104525  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0045793020300992  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210322 
993 |a Article 
994 |a 2020 
998 |g 1191198812  |a Rupp, Andreas  |m 1191198812:Rupp, Andreas  |d 700000  |d 708000  |d 700000  |d 728500  |e 700000PR1191198812  |e 708000PR1191198812  |e 700000PR1191198812  |e 728500PR1191198812  |k 0/700000/  |k 1/700000/708000/  |k 0/700000/  |k 1/700000/728500/  |p 3  |y j 
999 |a KXP-PPN1752007077  |e 3892388016 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"15 S."}],"relHost":[{"language":["eng"],"recId":"306654938","disp":"Locally bound-preserving enriched Galerkin methods for the linear advection equationComputers & fluids","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 29.12.2020"],"part":{"pages":"1-15","year":"2020","extent":"15","volume":"205","text":"205(2020), Artikel-ID 104525, Seite 1-15"},"titleAlt":[{"title":"Computers and fluids"}],"pubHistory":["1.1973 - 39.2010; Vol. 40.2011 -"],"title":[{"title":"Computers & fluids","subtitle":"an international journal","title_sort":"Computers & fluids"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1879-0747"],"zdb":["1499975-4"],"eki":["306654938"]},"origin":[{"publisherPlace":"Amsterdam [u.a.]","publisher":"Elsevier Science","dateIssuedKey":"1973","dateIssuedDisp":"1973-"}]}],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"14 April 2020"}],"id":{"doi":["10.1016/j.compfluid.2020.104525"],"eki":["1752007077"]},"name":{"displayForm":["Dmitri Kuzmin, Hennes Hajduk, Andreas Rupp"]},"note":["Gesehen am 22.03.2021"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1752007077","title":[{"title_sort":"Locally bound-preserving enriched Galerkin methods for the linear advection equation","title":"Locally bound-preserving enriched Galerkin methods for the linear advection equation"}],"person":[{"display":"Kuzmin, D.","roleDisplay":"VerfasserIn","role":"aut","family":"Kuzmin","given":"D."},{"given":"Hennes","family":"Hajduk","role":"aut","display":"Hajduk, Hennes","roleDisplay":"VerfasserIn"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Rupp, Andreas","given":"Andreas","family":"Rupp"}]} 
SRT |a KUZMINDHAJLOCALLYBOU1420