Locally bound-preserving enriched Galerkin methods for the linear advection equation
In this work, we introduce algebraic flux correction schemes for enriched (P1⊕P0 and Q1⊕P0) Galerkin discretizations of the linear advection equation. The piecewise-constant component stabilizes the continuous Galerkin approximation without introducing free parameters. However, violations of discret...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
14 April 2020
|
| In: |
Computers & fluids
Year: 2020, Jahrgang: 205, Pages: 1-15 |
| ISSN: | 1879-0747 |
| DOI: | 10.1016/j.compfluid.2020.104525 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.compfluid.2020.104525 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0045793020300992 |
| Verfasserangaben: | Dmitri Kuzmin, Hennes Hajduk, Andreas Rupp |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1752007077 | ||
| 003 | DE-627 | ||
| 005 | 20220819141611.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210322s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.compfluid.2020.104525 |2 doi | |
| 035 | |a (DE-627)1752007077 | ||
| 035 | |a (DE-599)KXP1752007077 | ||
| 035 | |a (OCoLC)1341400655 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 28 |2 sdnb | ||
| 100 | 1 | |a Kuzmin, D. |d 1974- |e VerfasserIn |0 (DE-588)1011171775 |0 (DE-627)658048880 |0 (DE-576)34106016X |4 aut | |
| 245 | 1 | 0 | |a Locally bound-preserving enriched Galerkin methods for the linear advection equation |c Dmitri Kuzmin, Hennes Hajduk, Andreas Rupp |
| 264 | 1 | |c 14 April 2020 | |
| 300 | |a 15 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 22.03.2021 | ||
| 520 | |a In this work, we introduce algebraic flux correction schemes for enriched (P1⊕P0 and Q1⊕P0) Galerkin discretizations of the linear advection equation. The piecewise-constant component stabilizes the continuous Galerkin approximation without introducing free parameters. However, violations of discrete maximum principles are possible in the neighborhood of discontinuities and steep fronts. To keep the cell averages and the degrees of freedom of the continuous P1/Q1 component in the admissible range, we limit the fluxes and element contributions, the complete removal of which would correspond to first-order upwinding. The first limiting procedure that we consider in this paper is based on the flux-corrected transport (FCT) paradigm. It belongs to the family of predictor-corrector algorithms and requires the use of small time steps. The second limiting strategy is monolithic and produces nonlinear problems with well-defined residuals. This kind of limiting is well suited for stationary and time-dependent problems alike. The need for inverting consistent mass matrices in explicit strong stability preserving Runge-Kutta time integrators is avoided by reconstructing nodal time derivatives from cell averages. Numerical studies are performed for standard 2D test problems. | ||
| 650 | 4 | |a Convex limiting | |
| 650 | 4 | |a Discrete maximum principles | |
| 650 | 4 | |a Enriched Galerkin method | |
| 650 | 4 | |a Flux-corrected transport | |
| 650 | 4 | |a Linear advection equation | |
| 700 | 1 | |a Hajduk, Hennes |d 1992- |e VerfasserIn |0 (DE-588)1182436048 |0 (DE-627)1662744749 |4 aut | |
| 700 | 1 | |a Rupp, Andreas |d 1992- |e VerfasserIn |0 (DE-588)1191198812 |0 (DE-627)1669602907 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Computers & fluids |d Amsterdam [u.a.] : Elsevier Science, 1973 |g 205(2020), Artikel-ID 104525, Seite 1-15 |h Online-Ressource |w (DE-627)306654938 |w (DE-600)1499975-4 |w (DE-576)094531250 |x 1879-0747 |7 nnas |a Locally bound-preserving enriched Galerkin methods for the linear advection equation |
| 773 | 1 | 8 | |g volume:205 |g year:2020 |g elocationid:104525 |g pages:1-15 |g extent:15 |a Locally bound-preserving enriched Galerkin methods for the linear advection equation |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.compfluid.2020.104525 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0045793020300992 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210322 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1191198812 |a Rupp, Andreas |m 1191198812:Rupp, Andreas |d 700000 |d 708000 |d 700000 |d 728500 |e 700000PR1191198812 |e 708000PR1191198812 |e 700000PR1191198812 |e 728500PR1191198812 |k 0/700000/ |k 1/700000/708000/ |k 0/700000/ |k 1/700000/728500/ |p 3 |y j | ||
| 999 | |a KXP-PPN1752007077 |e 3892388016 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"15 S."}],"relHost":[{"language":["eng"],"recId":"306654938","disp":"Locally bound-preserving enriched Galerkin methods for the linear advection equationComputers & fluids","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 29.12.2020"],"part":{"pages":"1-15","year":"2020","extent":"15","volume":"205","text":"205(2020), Artikel-ID 104525, Seite 1-15"},"titleAlt":[{"title":"Computers and fluids"}],"pubHistory":["1.1973 - 39.2010; Vol. 40.2011 -"],"title":[{"title":"Computers & fluids","subtitle":"an international journal","title_sort":"Computers & fluids"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1879-0747"],"zdb":["1499975-4"],"eki":["306654938"]},"origin":[{"publisherPlace":"Amsterdam [u.a.]","publisher":"Elsevier Science","dateIssuedKey":"1973","dateIssuedDisp":"1973-"}]}],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"14 April 2020"}],"id":{"doi":["10.1016/j.compfluid.2020.104525"],"eki":["1752007077"]},"name":{"displayForm":["Dmitri Kuzmin, Hennes Hajduk, Andreas Rupp"]},"note":["Gesehen am 22.03.2021"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1752007077","title":[{"title_sort":"Locally bound-preserving enriched Galerkin methods for the linear advection equation","title":"Locally bound-preserving enriched Galerkin methods for the linear advection equation"}],"person":[{"display":"Kuzmin, D.","roleDisplay":"VerfasserIn","role":"aut","family":"Kuzmin","given":"D."},{"given":"Hennes","family":"Hajduk","role":"aut","display":"Hajduk, Hennes","roleDisplay":"VerfasserIn"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Rupp, Andreas","given":"Andreas","family":"Rupp"}]} | ||
| SRT | |a KUZMINDHAJLOCALLYBOU1420 | ||