Locally bound-preserving enriched Galerkin methods for the linear advection equation

In this work, we introduce algebraic flux correction schemes for enriched (P1⊕P0 and Q1⊕P0) Galerkin discretizations of the linear advection equation. The piecewise-constant component stabilizes the continuous Galerkin approximation without introducing free parameters. However, violations of discret...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kuzmin, D. (VerfasserIn) , Hajduk, Hennes (VerfasserIn) , Rupp, Andreas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 14 April 2020
In: Computers & fluids
Year: 2020, Jahrgang: 205, Pages: 1-15
ISSN:1879-0747
DOI:10.1016/j.compfluid.2020.104525
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.compfluid.2020.104525
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0045793020300992
Volltext
Verfasserangaben:Dmitri Kuzmin, Hennes Hajduk, Andreas Rupp
Beschreibung
Zusammenfassung:In this work, we introduce algebraic flux correction schemes for enriched (P1⊕P0 and Q1⊕P0) Galerkin discretizations of the linear advection equation. The piecewise-constant component stabilizes the continuous Galerkin approximation without introducing free parameters. However, violations of discrete maximum principles are possible in the neighborhood of discontinuities and steep fronts. To keep the cell averages and the degrees of freedom of the continuous P1/Q1 component in the admissible range, we limit the fluxes and element contributions, the complete removal of which would correspond to first-order upwinding. The first limiting procedure that we consider in this paper is based on the flux-corrected transport (FCT) paradigm. It belongs to the family of predictor-corrector algorithms and requires the use of small time steps. The second limiting strategy is monolithic and produces nonlinear problems with well-defined residuals. This kind of limiting is well suited for stationary and time-dependent problems alike. The need for inverting consistent mass matrices in explicit strong stability preserving Runge-Kutta time integrators is avoided by reconstructing nodal time derivatives from cell averages. Numerical studies are performed for standard 2D test problems.
Beschreibung:Gesehen am 22.03.2021
Beschreibung:Online Resource
ISSN:1879-0747
DOI:10.1016/j.compfluid.2020.104525