Quantum cosmology of Fab Four John theory with conformable fractional derivative

We study a quantization via fractional derivative of a nonminimal derivative coupling cosmological theory, namely, the Fab Four John theory. Its Hamiltonian version presents the issue of fractional powers in the momenta. That problem is solved here by the application of the so-called conformable fra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Torres, Isaac (VerfasserIn) , Fabris, Júlio César (VerfasserIn) , Piattella, Oliver F. (VerfasserIn) , Batista, Antônio Brasil (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 31 March 2020
In: Universe
Year: 2020, Jahrgang: 6, Heft: 4, Pages: 1-20
ISSN:2218-1997
DOI:10.3390/universe6040050
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/universe6040050
Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2218-1997/6/4/50
Volltext
Verfasserangaben:Isaac Torres, Júlio César Fabris, Oliver Fabio Piattella and Antônio Brasil Batista

MARC

LEADER 00000caa a2200000 c 4500
001 1752016661
003 DE-627
005 20220819141917.0
007 cr uuu---uuuuu
008 210322s2020 xx |||||o 00| ||eng c
024 7 |a 10.3390/universe6040050  |2 doi 
035 |a (DE-627)1752016661 
035 |a (DE-599)KXP1752016661 
035 |a (OCoLC)1341400622 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Torres, Isaac  |e VerfasserIn  |0 (DE-588)1207188948  |0 (DE-627)1693441829  |4 aut 
245 1 0 |a Quantum cosmology of Fab Four John theory with conformable fractional derivative  |c Isaac Torres, Júlio César Fabris, Oliver Fabio Piattella and Antônio Brasil Batista 
264 1 |c 31 March 2020 
300 |a 20 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 22.03.2021 
520 |a We study a quantization via fractional derivative of a nonminimal derivative coupling cosmological theory, namely, the Fab Four John theory. Its Hamiltonian version presents the issue of fractional powers in the momenta. That problem is solved here by the application of the so-called conformable fractional derivative. This leads to a Wheeler–DeWitt equation of second order, showing that a Bohm–de Broglie interpretation can be constructed. That combination of fractional quantization and Bohmian interpretation provides us a new quantization method, in which the quantum potential is the criterion to say if a quantum solution is acceptable or not to be further studied. We show that a wide range of solutions for the scale factor is possible. Among all of those, a bouncing solution analogous to the perfect fluid cosmology seems to deserve special attention. 
650 4 |a alternatives to inflationary models 
650 4 |a modified gravity 
650 4 |a quantization methods 
650 4 |a quantum cosmology 
700 1 |a Fabris, Júlio César  |e VerfasserIn  |4 aut 
700 1 |a Piattella, Oliver F.  |e VerfasserIn  |0 (DE-588)1191197484  |0 (DE-627)1669598551  |4 aut 
700 1 |a Batista, Antônio Brasil  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Universe  |d Basel : MDPI, 2015  |g 6(2020), 4, Artikel-ID 50, Seite 1-20  |h Online-Ressource  |w (DE-627)820684236  |w (DE-600)2813994-X  |w (DE-576)427945410  |x 2218-1997  |7 nnas  |a Quantum cosmology of Fab Four John theory with conformable fractional derivative 
773 1 8 |g volume:6  |g year:2020  |g number:4  |g elocationid:50  |g pages:1-20  |g extent:20  |a Quantum cosmology of Fab Four John theory with conformable fractional derivative 
856 4 0 |u https://doi.org/10.3390/universe6040050  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2218-1997/6/4/50  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210322 
993 |a Article 
994 |a 2020 
998 |g 1191197484  |a Piattella, Oliver F.  |m 1191197484:Piattella, Oliver F.  |p 3 
999 |a KXP-PPN1752016661  |e 3892473536 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 22.03.2021"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1752016661","language":["eng"],"title":[{"title":"Quantum cosmology of Fab Four John theory with conformable fractional derivative","title_sort":"Quantum cosmology of Fab Four John theory with conformable fractional derivative"}],"person":[{"display":"Torres, Isaac","roleDisplay":"VerfasserIn","role":"aut","family":"Torres","given":"Isaac"},{"given":"Júlio César","family":"Fabris","role":"aut","display":"Fabris, Júlio César","roleDisplay":"VerfasserIn"},{"given":"Oliver F.","family":"Piattella","role":"aut","roleDisplay":"VerfasserIn","display":"Piattella, Oliver F."},{"role":"aut","roleDisplay":"VerfasserIn","display":"Batista, Antônio Brasil","given":"Antônio Brasil","family":"Batista"}],"physDesc":[{"extent":"20 S."}],"relHost":[{"part":{"extent":"20","volume":"6","text":"6(2020), 4, Artikel-ID 50, Seite 1-20","issue":"4","pages":"1-20","year":"2020"},"pubHistory":["1.2015 -"],"language":["eng"],"recId":"820684236","note":["Gesehen am 10.03.15"],"disp":"Quantum cosmology of Fab Four John theory with conformable fractional derivativeUniverse","type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title":"Universe","subtitle":"open access journal","title_sort":"Universe"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2813994-X"],"eki":["820684236"],"issn":["2218-1997"]},"origin":[{"publisherPlace":"Basel","dateIssuedDisp":"2015-","dateIssuedKey":"2015","publisher":"MDPI"}]}],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"31 March 2020"}],"id":{"eki":["1752016661"],"doi":["10.3390/universe6040050"]},"name":{"displayForm":["Isaac Torres, Júlio César Fabris, Oliver Fabio Piattella and Antônio Brasil Batista"]}} 
SRT |a TORRESISAAQUANTUMCOS3120