Quantum cosmology of Fab Four John theory with conformable fractional derivative
We study a quantization via fractional derivative of a nonminimal derivative coupling cosmological theory, namely, the Fab Four John theory. Its Hamiltonian version presents the issue of fractional powers in the momenta. That problem is solved here by the application of the so-called conformable fra...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
31 March 2020
|
| In: |
Universe
Year: 2020, Jahrgang: 6, Heft: 4, Pages: 1-20 |
| ISSN: | 2218-1997 |
| DOI: | 10.3390/universe6040050 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/universe6040050 Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2218-1997/6/4/50 |
| Verfasserangaben: | Isaac Torres, Júlio César Fabris, Oliver Fabio Piattella and Antônio Brasil Batista |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1752016661 | ||
| 003 | DE-627 | ||
| 005 | 20220819141917.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210322s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3390/universe6040050 |2 doi | |
| 035 | |a (DE-627)1752016661 | ||
| 035 | |a (DE-599)KXP1752016661 | ||
| 035 | |a (OCoLC)1341400622 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Torres, Isaac |e VerfasserIn |0 (DE-588)1207188948 |0 (DE-627)1693441829 |4 aut | |
| 245 | 1 | 0 | |a Quantum cosmology of Fab Four John theory with conformable fractional derivative |c Isaac Torres, Júlio César Fabris, Oliver Fabio Piattella and Antônio Brasil Batista |
| 264 | 1 | |c 31 March 2020 | |
| 300 | |a 20 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 22.03.2021 | ||
| 520 | |a We study a quantization via fractional derivative of a nonminimal derivative coupling cosmological theory, namely, the Fab Four John theory. Its Hamiltonian version presents the issue of fractional powers in the momenta. That problem is solved here by the application of the so-called conformable fractional derivative. This leads to a Wheeler–DeWitt equation of second order, showing that a Bohm–de Broglie interpretation can be constructed. That combination of fractional quantization and Bohmian interpretation provides us a new quantization method, in which the quantum potential is the criterion to say if a quantum solution is acceptable or not to be further studied. We show that a wide range of solutions for the scale factor is possible. Among all of those, a bouncing solution analogous to the perfect fluid cosmology seems to deserve special attention. | ||
| 650 | 4 | |a alternatives to inflationary models | |
| 650 | 4 | |a modified gravity | |
| 650 | 4 | |a quantization methods | |
| 650 | 4 | |a quantum cosmology | |
| 700 | 1 | |a Fabris, Júlio César |e VerfasserIn |4 aut | |
| 700 | 1 | |a Piattella, Oliver F. |e VerfasserIn |0 (DE-588)1191197484 |0 (DE-627)1669598551 |4 aut | |
| 700 | 1 | |a Batista, Antônio Brasil |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Universe |d Basel : MDPI, 2015 |g 6(2020), 4, Artikel-ID 50, Seite 1-20 |h Online-Ressource |w (DE-627)820684236 |w (DE-600)2813994-X |w (DE-576)427945410 |x 2218-1997 |7 nnas |a Quantum cosmology of Fab Four John theory with conformable fractional derivative |
| 773 | 1 | 8 | |g volume:6 |g year:2020 |g number:4 |g elocationid:50 |g pages:1-20 |g extent:20 |a Quantum cosmology of Fab Four John theory with conformable fractional derivative |
| 856 | 4 | 0 | |u https://doi.org/10.3390/universe6040050 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.mdpi.com/2218-1997/6/4/50 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210322 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1191197484 |a Piattella, Oliver F. |m 1191197484:Piattella, Oliver F. |p 3 | ||
| 999 | |a KXP-PPN1752016661 |e 3892473536 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"note":["Gesehen am 22.03.2021"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1752016661","language":["eng"],"title":[{"title":"Quantum cosmology of Fab Four John theory with conformable fractional derivative","title_sort":"Quantum cosmology of Fab Four John theory with conformable fractional derivative"}],"person":[{"display":"Torres, Isaac","roleDisplay":"VerfasserIn","role":"aut","family":"Torres","given":"Isaac"},{"given":"Júlio César","family":"Fabris","role":"aut","display":"Fabris, Júlio César","roleDisplay":"VerfasserIn"},{"given":"Oliver F.","family":"Piattella","role":"aut","roleDisplay":"VerfasserIn","display":"Piattella, Oliver F."},{"role":"aut","roleDisplay":"VerfasserIn","display":"Batista, Antônio Brasil","given":"Antônio Brasil","family":"Batista"}],"physDesc":[{"extent":"20 S."}],"relHost":[{"part":{"extent":"20","volume":"6","text":"6(2020), 4, Artikel-ID 50, Seite 1-20","issue":"4","pages":"1-20","year":"2020"},"pubHistory":["1.2015 -"],"language":["eng"],"recId":"820684236","note":["Gesehen am 10.03.15"],"disp":"Quantum cosmology of Fab Four John theory with conformable fractional derivativeUniverse","type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title":"Universe","subtitle":"open access journal","title_sort":"Universe"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2813994-X"],"eki":["820684236"],"issn":["2218-1997"]},"origin":[{"publisherPlace":"Basel","dateIssuedDisp":"2015-","dateIssuedKey":"2015","publisher":"MDPI"}]}],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"31 March 2020"}],"id":{"eki":["1752016661"],"doi":["10.3390/universe6040050"]},"name":{"displayForm":["Isaac Torres, Júlio César Fabris, Oliver Fabio Piattella and Antônio Brasil Batista"]}} | ||
| SRT | |a TORRESISAAQUANTUMCOS3120 | ||