Objective quantification of aortic valvular structures by cardiac computed tomography angiography in patients considered for transcatheter aortic valve implantation

Purpose To test the ability of a model-based segmentation of the aortic root for consistent assessment of aortic valve structures in patients considered for transcatheter aortic valve implantation (TAVI) who underwent 256-slice cardiac computed tomography (CT). Methods Consecutive patients (n = 49)...

Full description

Saved in:
Bibliographic Details
Main Authors: Korosoglou, Grigorios (Author) , Gitsioudis, Gitsios (Author) , Wächter‐Stehle, Irina (Author) , Weese, Jürgen (Author) , Krumsdorf, Ulrike (Author) , Chorianopoulos, Emmanuel (Author) , Hosch, Waldemar P. (Author) , Kauczor, Hans-Ulrich (Author) , Katus, Hugo (Author) , Bekeredjian, Raffi (Author)
Format: Article (Journal)
Language:English
Published: 2013
In: Catheterization and cardiovascular interventions
Year: 2013, Volume: 81, Issue: 1, Pages: 148-159
ISSN:1522-726X
DOI:https://doi.org/10.1002/ccd.23486
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/https://doi.org/10.1002/ccd.23486
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/ccd.23486
Get full text
Author Notes:Grigorios Korosoglou, MD, Gitsios Gitsioudis, MD, Irina Waechter-Stehle, PhD, Juergen Weese, PhD, Ulrike Krumsdorf, MD, Emmanuel Chorianopoulos, MD, Waldemar Hosch, MD, Hans-Ulrich Kauczor, MD, Hugo A. Katus, MD, and Raffi Bekeredjian, MD
Description
Summary:Purpose To test the ability of a model-based segmentation of the aortic root for consistent assessment of aortic valve structures in patients considered for transcatheter aortic valve implantation (TAVI) who underwent 256-slice cardiac computed tomography (CT). Methods Consecutive patients (n = 49) with symptomatic severe aortic stenosis considered for TAVI and patients without aortic stenosis (n = 17) underwent cardiac CT. Images were evaluated by two independent observers who measured the diameter of the aortic annulus and its distance to both coronary ostia (1) manually and (2) software-assisted. All acquired measures were compared with each other and to (3) fully automatic quantification. Results High correlations were observed for 3D measures of the aortic annulus conducted on multiple oblique planes (r = 0.87 and 0.84 between observers and model-based measures, and r = 0.81 between observers). Reproducibility was further improved by software-assisted versus manual assessment for all the acquired variables (r = 0.98 versus 0.81 for annulus diameter, r = 0.94 versus 0.85 for distance to the left coronary ostium, P < 0.01 for both). Thus, using software-assisted measurements very low limits of agreement were observed for the annulus diameter (95%CI of −1.2 to 0.6 mm) and within very low time-spent (0.6 ± 0.1 min for software-assisted versus 1.6 ± 0.3 min per patient for manual assessment, P < 0.001). Assessment of the aortic annulus using the 3D model-based instead of manual 2D-coronal measurements would have modified the implantation strategy in 12 of 49 patients (25%) with aortic stenosis. Four of 12 patients with potentially modified implantation strategy yielded postprocedural moderate paravalvular regurgitation, which may have been avoided by implantation of a larger prosthesis, as suggested by automatic 3D measures. Conclusion Our study highlights the usefulness of software-assisted preprocedural assessment of the aortic annulus in patients considered for TAVI. © 2012 Wiley Periodicals, Inc.
Item Description:Published online 19 December 2012
Gesehen am 18.11.2021
Physical Description:Online Resource
ISSN:1522-726X
DOI:https://doi.org/10.1002/ccd.23486