Signature cocycles on the mapping class group and symplectic groups
Werner Meyer constructed a cocycle in H2(Sp(2g,Z);Z) which computes the signature of a closed oriented surface bundle over a surface. By studying properties of this cocycle, he also showed that the signature of such a surface bundle is a multiple of 4. In this paper, we study signature cocycles both...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
22 April 2020
|
| In: |
Journal of pure and applied algebra
Year: 2020, Jahrgang: 224, Heft: 11, Pages: 1-49 |
| ISSN: | 1873-1376 |
| DOI: | 10.1016/j.jpaa.2020.106400 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jpaa.2020.106400 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0022404920300992 |
| Verfasserangaben: | Dave Benson, Caterina Campagnolo, Andrew Ranicki, Carmen Rovi |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1752575717 | ||
| 003 | DE-627 | ||
| 005 | 20240413193236.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210326s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.jpaa.2020.106400 |2 doi | |
| 035 | |a (DE-627)1752575717 | ||
| 035 | |a (DE-599)KXP1752575717 | ||
| 035 | |a (OCoLC)1341401084 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Benson, David J. |d 1955- |e VerfasserIn |0 (DE-588)110324714 |0 (DE-627)521425638 |0 (DE-576)173402828 |4 aut | |
| 245 | 1 | 0 | |a Signature cocycles on the mapping class group and symplectic groups |c Dave Benson, Caterina Campagnolo, Andrew Ranicki, Carmen Rovi |
| 264 | 1 | |c 22 April 2020 | |
| 300 | |a 49 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 26.03.2021 | ||
| 520 | |a Werner Meyer constructed a cocycle in H2(Sp(2g,Z);Z) which computes the signature of a closed oriented surface bundle over a surface. By studying properties of this cocycle, he also showed that the signature of such a surface bundle is a multiple of 4. In this paper, we study signature cocycles both from the geometric and algebraic points of view. We present geometric constructions which are relevant to the signature cocycle and provide an alternative to Meyer's decomposition of a surface bundle. Furthermore, we discuss the precise relation between the Meyer and Wall-Maslov index. The main theorem of the paper, Theorem 6.6, provides the necessary group cohomology results to analyze the signature of a surface bundle modulo any integer N. Using these results, we are able to give a complete answer for N=2,4, and 8, and based on a theorem of Deligne, we show that this is the best we can hope for using this method. | ||
| 650 | 4 | |a Cocycles | |
| 650 | 4 | |a Fibre bundle | |
| 650 | 4 | |a Signature | |
| 650 | 4 | |a Symplectic group | |
| 700 | 1 | |a Campagnolo, Caterina |e VerfasserIn |0 (DE-588)1208842072 |0 (DE-627)1695777107 |4 aut | |
| 700 | 1 | |a Ranicki, Andrew |e VerfasserIn |4 aut | |
| 700 | 1 | |a Rovi, Carmen |e VerfasserIn |0 (DE-588)1230138153 |0 (DE-627)1752576128 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of pure and applied algebra |d Amsterdam [u.a.] : North-Holland, Elsevier Science, 1971 |g 224(2020), 11 vom: Nov., Artikel-ID 106400, Seite 1-49 |h Online-Ressource |w (DE-627)266014445 |w (DE-600)1466510-4 |w (DE-576)074959654 |x 1873-1376 |7 nnas |a Signature cocycles on the mapping class group and symplectic groups |
| 773 | 1 | 8 | |g volume:224 |g year:2020 |g number:11 |g month:11 |g elocationid:106400 |g pages:1-49 |g extent:49 |a Signature cocycles on the mapping class group and symplectic groups |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.jpaa.2020.106400 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0022404920300992 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210326 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1230138153 |a Rovi, Carmen |m 1230138153:Rovi, Carmen |d 700000 |d 728500 |e 700000PR1230138153 |e 728500PR1230138153 |k 0/700000/ |k 1/700000/728500/ |p 4 |y j | ||
| 999 | |a KXP-PPN1752575717 |e 3894698152 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"recId":"1752575717","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 26.03.2021"],"person":[{"roleDisplay":"VerfasserIn","display":"Benson, David J.","role":"aut","family":"Benson","given":"David J."},{"display":"Campagnolo, Caterina","roleDisplay":"VerfasserIn","role":"aut","family":"Campagnolo","given":"Caterina"},{"given":"Andrew","family":"Ranicki","role":"aut","roleDisplay":"VerfasserIn","display":"Ranicki, Andrew"},{"roleDisplay":"VerfasserIn","display":"Rovi, Carmen","role":"aut","family":"Rovi","given":"Carmen"}],"title":[{"title_sort":"Signature cocycles on the mapping class group and symplectic groups","title":"Signature cocycles on the mapping class group and symplectic groups"}],"relHost":[{"title":[{"title":"Journal of pure and applied algebra","title_sort":"Journal of pure and applied algebra"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 02.01.25","Fortsetzung der Druck-Ausgabe","Ungezählte Beil.: Supplement"],"disp":"Signature cocycles on the mapping class group and symplectic groupsJournal of pure and applied algebra","recId":"266014445","language":["eng"],"pubHistory":["1.1971 -"],"part":{"volume":"224","text":"224(2020), 11 vom: Nov., Artikel-ID 106400, Seite 1-49","extent":"49","year":"2020","issue":"11","pages":"1-49"},"origin":[{"dateIssuedDisp":"1971-","dateIssuedKey":"1971","publisher":"North-Holland, Elsevier Science ; North-Holland","publisherPlace":"Amsterdam [u.a.] ; Amsterdam [u.a.]"}],"id":{"eki":["266014445"],"zdb":["1466510-4"],"issn":["1873-1376"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"49 S."}],"name":{"displayForm":["Dave Benson, Caterina Campagnolo, Andrew Ranicki, Carmen Rovi"]},"id":{"eki":["1752575717"],"doi":["10.1016/j.jpaa.2020.106400"]},"origin":[{"dateIssuedDisp":"22 April 2020","dateIssuedKey":"2020"}]} | ||
| SRT | |a BENSONDAVISIGNATUREC2220 | ||