Signature cocycles on the mapping class group and symplectic groups

Werner Meyer constructed a cocycle in H2(Sp(2g,Z);Z) which computes the signature of a closed oriented surface bundle over a surface. By studying properties of this cocycle, he also showed that the signature of such a surface bundle is a multiple of 4. In this paper, we study signature cocycles both...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Benson, David J. (VerfasserIn) , Campagnolo, Caterina (VerfasserIn) , Ranicki, Andrew (VerfasserIn) , Rovi, Carmen (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 22 April 2020
In: Journal of pure and applied algebra
Year: 2020, Jahrgang: 224, Heft: 11, Pages: 1-49
ISSN:1873-1376
DOI:10.1016/j.jpaa.2020.106400
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jpaa.2020.106400
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0022404920300992
Volltext
Verfasserangaben:Dave Benson, Caterina Campagnolo, Andrew Ranicki, Carmen Rovi

MARC

LEADER 00000caa a2200000 c 4500
001 1752575717
003 DE-627
005 20240413193236.0
007 cr uuu---uuuuu
008 210326s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jpaa.2020.106400  |2 doi 
035 |a (DE-627)1752575717 
035 |a (DE-599)KXP1752575717 
035 |a (OCoLC)1341401084 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Benson, David J.  |d 1955-  |e VerfasserIn  |0 (DE-588)110324714  |0 (DE-627)521425638  |0 (DE-576)173402828  |4 aut 
245 1 0 |a Signature cocycles on the mapping class group and symplectic groups  |c Dave Benson, Caterina Campagnolo, Andrew Ranicki, Carmen Rovi 
264 1 |c 22 April 2020 
300 |a 49 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 26.03.2021 
520 |a Werner Meyer constructed a cocycle in H2(Sp(2g,Z);Z) which computes the signature of a closed oriented surface bundle over a surface. By studying properties of this cocycle, he also showed that the signature of such a surface bundle is a multiple of 4. In this paper, we study signature cocycles both from the geometric and algebraic points of view. We present geometric constructions which are relevant to the signature cocycle and provide an alternative to Meyer's decomposition of a surface bundle. Furthermore, we discuss the precise relation between the Meyer and Wall-Maslov index. The main theorem of the paper, Theorem 6.6, provides the necessary group cohomology results to analyze the signature of a surface bundle modulo any integer N. Using these results, we are able to give a complete answer for N=2,4, and 8, and based on a theorem of Deligne, we show that this is the best we can hope for using this method. 
650 4 |a Cocycles 
650 4 |a Fibre bundle 
650 4 |a Signature 
650 4 |a Symplectic group 
700 1 |a Campagnolo, Caterina  |e VerfasserIn  |0 (DE-588)1208842072  |0 (DE-627)1695777107  |4 aut 
700 1 |a Ranicki, Andrew  |e VerfasserIn  |4 aut 
700 1 |a Rovi, Carmen  |e VerfasserIn  |0 (DE-588)1230138153  |0 (DE-627)1752576128  |4 aut 
773 0 8 |i Enthalten in  |t Journal of pure and applied algebra  |d Amsterdam [u.a.] : North-Holland, Elsevier Science, 1971  |g 224(2020), 11 vom: Nov., Artikel-ID 106400, Seite 1-49  |h Online-Ressource  |w (DE-627)266014445  |w (DE-600)1466510-4  |w (DE-576)074959654  |x 1873-1376  |7 nnas  |a Signature cocycles on the mapping class group and symplectic groups 
773 1 8 |g volume:224  |g year:2020  |g number:11  |g month:11  |g elocationid:106400  |g pages:1-49  |g extent:49  |a Signature cocycles on the mapping class group and symplectic groups 
856 4 0 |u https://doi.org/10.1016/j.jpaa.2020.106400  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0022404920300992  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210326 
993 |a Article 
994 |a 2020 
998 |g 1230138153  |a Rovi, Carmen  |m 1230138153:Rovi, Carmen  |d 700000  |d 728500  |e 700000PR1230138153  |e 728500PR1230138153  |k 0/700000/  |k 1/700000/728500/  |p 4  |y j 
999 |a KXP-PPN1752575717  |e 3894698152 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"recId":"1752575717","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 26.03.2021"],"person":[{"roleDisplay":"VerfasserIn","display":"Benson, David J.","role":"aut","family":"Benson","given":"David J."},{"display":"Campagnolo, Caterina","roleDisplay":"VerfasserIn","role":"aut","family":"Campagnolo","given":"Caterina"},{"given":"Andrew","family":"Ranicki","role":"aut","roleDisplay":"VerfasserIn","display":"Ranicki, Andrew"},{"roleDisplay":"VerfasserIn","display":"Rovi, Carmen","role":"aut","family":"Rovi","given":"Carmen"}],"title":[{"title_sort":"Signature cocycles on the mapping class group and symplectic groups","title":"Signature cocycles on the mapping class group and symplectic groups"}],"relHost":[{"title":[{"title":"Journal of pure and applied algebra","title_sort":"Journal of pure and applied algebra"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 02.01.25","Fortsetzung der Druck-Ausgabe","Ungezählte Beil.: Supplement"],"disp":"Signature cocycles on the mapping class group and symplectic groupsJournal of pure and applied algebra","recId":"266014445","language":["eng"],"pubHistory":["1.1971 -"],"part":{"volume":"224","text":"224(2020), 11 vom: Nov., Artikel-ID 106400, Seite 1-49","extent":"49","year":"2020","issue":"11","pages":"1-49"},"origin":[{"dateIssuedDisp":"1971-","dateIssuedKey":"1971","publisher":"North-Holland, Elsevier Science ; North-Holland","publisherPlace":"Amsterdam [u.a.] ; Amsterdam [u.a.]"}],"id":{"eki":["266014445"],"zdb":["1466510-4"],"issn":["1873-1376"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"49 S."}],"name":{"displayForm":["Dave Benson, Caterina Campagnolo, Andrew Ranicki, Carmen Rovi"]},"id":{"eki":["1752575717"],"doi":["10.1016/j.jpaa.2020.106400"]},"origin":[{"dateIssuedDisp":"22 April 2020","dateIssuedKey":"2020"}]} 
SRT |a BENSONDAVISIGNATUREC2220