A matrix-free approach for finite-strain hyperelastic problems using geometric multigrid

This work investigates matrix-free algorithms for problems in quasi-static finite-strain hyperelasticity. Iterative solvers with matrix-free operator evaluation have emerged as an attractive alternative to sparse matrices in the fluid dynamics and wave propagation communities because they significan...

Full description

Saved in:
Bibliographic Details
Main Authors: Davydov, Denis (Author) , Pelteret, Jean-Paul (Author) , Arndt, Daniel (Author) , Kronbichler, Martin (Author) , Steinmann, Paul (Author)
Format: Article (Journal)
Language:English
Published: 27 February 2020
In: International journal for numerical methods in engineering
Year: 2020, Volume: 121, Issue: 13, Pages: 2874-2895
ISSN:1097-0207
DOI:https://doi.org/10.1002/nme.6336
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/https://doi.org/10.1002/nme.6336
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6336
Get full text
Author Notes:Denis Davydov, Jean-Paul Pelteret, Daniel Arndt, Martin Kronbichler, Paul Steinmann

MARC

LEADER 00000caa a2200000 c 4500
001 175265000X
003 DE-627
005 20220819145721.0
007 cr uuu---uuuuu
008 210329s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/nme.6336  |2 doi 
035 |a (DE-627)175265000X 
035 |a (DE-599)KXP175265000X 
035 |a (OCoLC)1341401606 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Davydov, Denis  |e VerfasserIn  |0 (DE-588)1230325646  |0 (DE-627)1752651197  |4 aut 
245 1 2 |a A matrix-free approach for finite-strain hyperelastic problems using geometric multigrid  |c Denis Davydov, Jean-Paul Pelteret, Daniel Arndt, Martin Kronbichler, Paul Steinmann 
264 1 |c 27 February 2020 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.03.2021 
520 |a This work investigates matrix-free algorithms for problems in quasi-static finite-strain hyperelasticity. Iterative solvers with matrix-free operator evaluation have emerged as an attractive alternative to sparse matrices in the fluid dynamics and wave propagation communities because they significantly reduce the memory traffic, the limiting factor in classical finite element solvers. Specifically, we study different matrix-free realizations of the finite element tangent operator and determine whether generalized methods of incorporating complex constitutive behavior might be feasible. In order to improve the convergence behavior of iterative solvers, we also propose a method by which to construct level tangent operators and employ them to define a geometric multigrid preconditioner. The performance of the matrix-free operator and the geometric multigrid preconditioner is compared to the matrix-based implementation with an algebraic multigrid (AMG) preconditioner on a single node for a representative numerical example of a heterogeneous hyperelastic material in two and three dimensions. We find that matrix-free methods for finite-strain solid mechanics are very promising, outperforming linear matrix-based schemes by two to five times, and that it is possible to develop numerically efficient implementations that are independent of the hyperelastic constitutive law. 
650 4 |a adaptive finite-element method 
650 4 |a finite-strain 
650 4 |a geometric multigrid 
650 4 |a hyperelasticity 
650 4 |a matrix-free 
700 1 |a Pelteret, Jean-Paul  |e VerfasserIn  |4 aut 
700 1 |a Arndt, Daniel  |d 1988-  |e VerfasserIn  |0 (DE-588)1151134910  |0 (DE-627)101136851X  |0 (DE-576)497498634  |4 aut 
700 1 |a Kronbichler, Martin  |e VerfasserIn  |4 aut 
700 1 |a Steinmann, Paul  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t International journal for numerical methods in engineering  |d Chichester [u.a.] : Wiley, 1969  |g 121(2020), 13, Seite 2874-2895  |h Online-Ressource  |w (DE-627)271598816  |w (DE-600)1480873-0  |w (DE-576)07870846X  |x 1097-0207  |7 nnas  |a A matrix-free approach for finite-strain hyperelastic problems using geometric multigrid 
773 1 8 |g volume:121  |g year:2020  |g number:13  |g pages:2874-2895  |g extent:22  |a A matrix-free approach for finite-strain hyperelastic problems using geometric multigrid 
856 4 0 |u https://doi.org/https://doi.org/10.1002/nme.6336  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6336  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210329 
993 |a Article 
994 |a 2020 
998 |g 1151134910  |a Arndt, Daniel  |m 1151134910:Arndt, Daniel  |p 3 
999 |a KXP-PPN175265000X  |e 3896671359 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 29.03.2021"],"recId":"175265000X","language":["eng"],"title":[{"title_sort":"matrix-free approach for finite-strain hyperelastic problems using geometric multigrid","title":"A matrix-free approach for finite-strain hyperelastic problems using geometric multigrid"}],"person":[{"family":"Davydov","given":"Denis","roleDisplay":"VerfasserIn","display":"Davydov, Denis","role":"aut"},{"role":"aut","display":"Pelteret, Jean-Paul","roleDisplay":"VerfasserIn","given":"Jean-Paul","family":"Pelteret"},{"role":"aut","display":"Arndt, Daniel","roleDisplay":"VerfasserIn","given":"Daniel","family":"Arndt"},{"family":"Kronbichler","given":"Martin","roleDisplay":"VerfasserIn","display":"Kronbichler, Martin","role":"aut"},{"given":"Paul","family":"Steinmann","role":"aut","roleDisplay":"VerfasserIn","display":"Steinmann, Paul"}],"physDesc":[{"extent":"22 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisher":"Wiley","dateIssuedKey":"1969","dateIssuedDisp":"1969-","publisherPlace":"Chichester [u.a.]"}],"id":{"issn":["1097-0207"],"zdb":["1480873-0"],"eki":["271598816"],"doi":["10.1002/(ISSN)1097-0207"]},"pubHistory":["1.1969 -"],"part":{"text":"121(2020), 13, Seite 2874-2895","volume":"121","extent":"22","year":"2020","pages":"2874-2895","issue":"13"},"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 12.10.05"],"disp":"A matrix-free approach for finite-strain hyperelastic problems using geometric multigridInternational journal for numerical methods in engineering","language":["eng"],"recId":"271598816","title":[{"title":"International journal for numerical methods in engineering","title_sort":"International journal for numerical methods in engineering"}]}],"origin":[{"dateIssuedDisp":"27 February 2020","dateIssuedKey":"2020"}],"id":{"doi":["10.1002/nme.6336"],"eki":["175265000X"]},"name":{"displayForm":["Denis Davydov, Jean-Paul Pelteret, Daniel Arndt, Martin Kronbichler, Paul Steinmann"]}} 
SRT |a DAVYDOVDENMATRIXFREE2720