Homogenization approach to water transport in plant tissues with periodic microstructures

Water flow in plant tissues takes place in two different physical domains separated by semipermeable membranes: cell insides and cell walls. The assembly of all cell insides and cell walls are termed <i>symplast <i/>and <i>apoplast<i/>, respectively. Water transport is pressu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chavarría-Krauser, Andrés (VerfasserIn) , Ptashnyk, Mariya (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 July 2013
In: Mathematical modelling of natural phenomena
Year: 2013, Jahrgang: 8, Heft: 4, Pages: 80-111
ISSN:1760-6101
DOI:10.1051/mmnp/20138406
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1051/mmnp/20138406
Verlag, lizenzpflichtig, Volltext: https://www.mmnp-journal.org/articles/mmnp/abs/2013/04/mmnp201384p80/mmnp201384p80.html
Volltext
Verfasserangaben:A. Chavarría-Krauser, M. Ptashnyk

MARC

LEADER 00000caa a2200000 c 4500
001 175270651X
003 DE-627
005 20230503124528.0
007 cr uuu---uuuuu
008 210329s2013 xx |||||o 00| ||eng c
024 7 |a 10.1051/mmnp/20138406  |2 doi 
035 |a (DE-627)175270651X 
035 |a (DE-599)KXP175270651X 
035 |a (OCoLC)1341401691 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 32  |2 sdnb 
100 1 |a Chavarría-Krauser, Andrés  |e VerfasserIn  |0 (DE-588)132929325  |0 (DE-627)528684280  |0 (DE-576)299509672  |4 aut 
245 1 0 |a Homogenization approach to water transport in plant tissues with periodic microstructures  |c A. Chavarría-Krauser, M. Ptashnyk 
264 1 |c 10 July 2013 
300 |a 32 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.03.2021 
520 |a Water flow in plant tissues takes place in two different physical domains separated by semipermeable membranes: cell insides and cell walls. The assembly of all cell insides and cell walls are termed <i>symplast <i/>and <i>apoplast<i/>, respectively. Water transport is pressure driven in both, where osmosis plays an essential role in membrane crossing. In this paper, a microscopic model of water flow and transport of an osmotically active solute in a plant tissue is considered. The model is posed on the scale of a single cell and the tissue is assumed to be composed of periodically distributed cells. The flow in the symplast can be regarded as a viscous Stokes flow, while Darcy’s law applies in the porous apoplast. Transmission conditions at the interface (semipermeable membrane) are obtained by balancing the mass fluxes through the interface and by describing the protein mediated transport as a surface reaction. Applying homogenization techniques, macroscopic equations for water and solute transport in a plant tissue are derived. The macroscopic problem is given by a Darcy law with a force term proportional to the difference in concentrations of the osmotically active solute in the symplast and apoplast; i.e. the flow is also driven by the local concentration difference and its direction can be different than the one prescribed by the pressure gradient. 
700 1 |a Ptashnyk, Mariya  |e VerfasserIn  |0 (DE-588)113824418X  |0 (DE-627)895562421  |0 (DE-576)187993602  |4 aut 
773 0 8 |i Enthalten in  |t Mathematical modelling of natural phenomena  |d Les Ulis : EDP Sciences, 2006  |g 8(2013), 4, Seite 80-111  |h Online-Ressource  |w (DE-627)555687104  |w (DE-600)2400590-3  |w (DE-576)337573336  |x 1760-6101  |7 nnas  |a Homogenization approach to water transport in plant tissues with periodic microstructures 
773 1 8 |g volume:8  |g year:2013  |g number:4  |g pages:80-111  |g extent:32  |a Homogenization approach to water transport in plant tissues with periodic microstructures 
856 4 0 |u https://doi.org/10.1051/mmnp/20138406  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.mmnp-journal.org/articles/mmnp/abs/2013/04/mmnp201384p80/mmnp201384p80.html  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210329 
993 |a Article 
994 |a 2013 
998 |g 132929325  |a Chavarría-Krauser, Andrés  |m 132929325:Chavarría-Krauser, Andrés  |d 700000  |d 708000  |e 700000PC132929325  |e 708000PC132929325  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN175270651X  |e 3896882880 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["175270651X"],"doi":["10.1051/mmnp/20138406"]},"origin":[{"dateIssuedDisp":"10 July 2013","dateIssuedKey":"2013"}],"name":{"displayForm":["A. Chavarría-Krauser, M. Ptashnyk"]},"relHost":[{"pubHistory":["1.2006 -"],"part":{"year":"2013","issue":"4","pages":"80-111","text":"8(2013), 4, Seite 80-111","volume":"8","extent":"32"},"titleAlt":[{"title":"MMNP"}],"disp":"Homogenization approach to water transport in plant tissues with periodic microstructuresMathematical modelling of natural phenomena","note":["Gesehen am 08.05.2018","Fortsetzung der Druck-Ausgabe"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"555687104","title":[{"subtitle":"MMNP","title":"Mathematical modelling of natural phenomena","title_sort":"Mathematical modelling of natural phenomena"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"2006","publisher":"EDP Sciences ; Research India Publ. ; Cambridge Univ. Press","dateIssuedDisp":"2006-","publisherPlace":"Les Ulis ; Delhi ; Cambridge"}],"id":{"eki":["555687104"],"zdb":["2400590-3"],"issn":["1760-6101"]}}],"physDesc":[{"extent":"32 S."}],"title":[{"title_sort":"Homogenization approach to water transport in plant tissues with periodic microstructures","title":"Homogenization approach to water transport in plant tissues with periodic microstructures"}],"person":[{"given":"Andrés","family":"Chavarría-Krauser","role":"aut","roleDisplay":"VerfasserIn","display":"Chavarría-Krauser, Andrés"},{"given":"Mariya","family":"Ptashnyk","role":"aut","display":"Ptashnyk, Mariya","roleDisplay":"VerfasserIn"}],"language":["eng"],"recId":"175270651X","note":["Gesehen am 29.03.2021"],"type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a CHAVARRIAKHOMOGENIZA1020