modelBuildR: an R package for model building and feature selection with erroneous classifications

Background Model building is a crucial part of omics based biomedical research to transfer classifications and obtain insights into underlying mechanisms. Feature selection is often based on minimizing error between model predictions and given classification (maximizing accuracy). Human ratings/clas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Knoll, Maximilian (VerfasserIn) , Furkel, Jennifer (VerfasserIn) , Debus, Jürgen (VerfasserIn) , Abdollahi, Amir (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 9 February 2021
In: PeerJ
Year: 2021, Jahrgang: 9, Pages: 1-18
ISSN:2167-8359
DOI:10.7717/peerj.10849
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.7717/peerj.10849
Verlag, lizenzpflichtig, Volltext: https://peerj.com/articles/10849
Volltext
Verfasserangaben:Maximilian Knoll, Jennifer Furkel, Juergen Debus and Amir Abdollahi

MARC

LEADER 00000caa a2200000 c 4500
001 1753114543
003 DE-627
005 20220819153136.0
007 cr uuu---uuuuu
008 210401s2021 xx |||||o 00| ||eng c
024 7 |a 10.7717/peerj.10849  |2 doi 
035 |a (DE-627)1753114543 
035 |a (DE-599)KXP1753114543 
035 |a (OCoLC)1341403097 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Knoll, Maximilian  |d 1988-  |e VerfasserIn  |0 (DE-588)1140661949  |0 (DE-627)898631998  |0 (DE-576)493979417  |4 aut 
245 1 0 |a modelBuildR  |b an R package for model building and feature selection with erroneous classifications  |c Maximilian Knoll, Jennifer Furkel, Juergen Debus and Amir Abdollahi 
264 1 |c 9 February 2021 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 01.04.2021 
520 |a Background Model building is a crucial part of omics based biomedical research to transfer classifications and obtain insights into underlying mechanisms. Feature selection is often based on minimizing error between model predictions and given classification (maximizing accuracy). Human ratings/classifications, however, might be error prone, with discordance rates between experts of 5-15%. We therefore evaluate if a feature pre-filtering step might improve identification of features associated with true underlying groups. Methods Data was simulated for up to 100 samples and up to 10,000 features, 10% of which were associated with the ground truth comprising 2-10 normally distributed populations. Binary and semi-quantitative ratings with varying error probabilities were used as classification. For feature preselection standard cross-validation (V2) was compared to a novel heuristic (V1) applying univariate testing, multiplicity adjustment and cross-validation on switched dependent (classification) and independent (features) variables. Preselected features were used to train logistic regression/linear models (backward selection, AIC). Predictions were compared against the ground truth (ROC, multiclass-ROC). As use case, multiple feature selection/classification methods were benchmarked against the novel heuristic to identify prognostically different G-CIMP negative glioblastoma tumors from the TCGA-GBM 450 k methylation array data cohort, starting from a fuzzy umap based rough and erroneous separation. Results V1 yielded higher median AUC ranks for two true groups (ground truth), with smaller differences for true graduated differences (3-10 groups). Lower fractions of models were successfully fit with V1. Median AUCs for binary classification and two true groups were 0.91 (range: 0.54-1.00) for V1 (Benjamini-Hochberg) and 0.70 (0.28-1.00) for V2, 13% (n = 616) of V2 models showed AUCs < = 50% for 25 samples and 100 features. For larger numbers of features and samples, median AUCs were 0.75 (range 0.59-1.00) for V1 and 0.54 (range 0.32-0.75) for V2. In the TCGA-GBM data, modelBuildR allowed best prognostic separation of patients with highest median overall survival difference (7.51 months) followed a difference of 6.04 months for a random forest based method. Conclusions The proposed heuristic is beneficial for the retrieval of features associated with two true groups classified with errors. We provide the R package modelBuildR to simplify (comparative) evaluation/application of the proposed heuristic (http://github.com/mknoll/modelBuildR). 
700 1 |a Furkel, Jennifer  |d 1993-  |e VerfasserIn  |0 (DE-588)1219456640  |0 (DE-627)1735368377  |4 aut 
700 1 |a Debus, Jürgen  |d 1964-  |e VerfasserIn  |0 (DE-588)1022671421  |0 (DE-627)717025780  |0 (DE-576)365774944  |4 aut 
700 1 |a Abdollahi, Amir  |e VerfasserIn  |0 (DE-588)129612715  |0 (DE-627)474757765  |0 (DE-576)297748874  |4 aut 
773 0 8 |i Enthalten in  |t PeerJ  |d London [u.a.] : PeerJ, Inc., 2013  |g 9(2021), Artikel-ID e10849, Seite 1-18  |h Online-Ressource  |w (DE-627)736558624  |w (DE-600)2703241-3  |w (DE-576)378985094  |x 2167-8359  |7 nnas  |a modelBuildR an R package for model building and feature selection with erroneous classifications 
773 1 8 |g volume:9  |g year:2021  |g elocationid:e10849  |g pages:1-18  |g extent:18  |a modelBuildR an R package for model building and feature selection with erroneous classifications 
856 4 0 |u https://doi.org/10.7717/peerj.10849  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://peerj.com/articles/10849  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210401 
993 |a Article 
994 |a 2021 
998 |g 129612715  |a Abdollahi, Amir  |m 129612715:Abdollahi, Amir  |d 910000  |d 911400  |e 910000PA129612715  |e 911400PA129612715  |k 0/910000/  |k 1/910000/911400/  |p 4  |y j 
998 |g 1022671421  |a Debus, Jürgen  |m 1022671421:Debus, Jürgen  |d 910000  |d 911400  |e 910000PD1022671421  |e 911400PD1022671421  |k 0/910000/  |k 1/910000/911400/  |p 3 
998 |g 1219456640  |a Furkel, Jennifer  |m 1219456640:Furkel, Jennifer  |d 910000  |d 911400  |e 910000PF1219456640  |e 911400PF1219456640  |k 0/910000/  |k 1/910000/911400/  |p 2 
998 |g 1140661949  |a Knoll, Maximilian  |m 1140661949:Knoll, Maximilian  |d 910000  |d 911400  |e 910000PK1140661949  |e 911400PK1140661949  |k 0/910000/  |k 1/910000/911400/  |p 1  |x j 
999 |a KXP-PPN1753114543  |e 3901559949 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Maximilian Knoll, Jennifer Furkel, Juergen Debus and Amir Abdollahi"]},"id":{"eki":["1753114543"],"doi":["10.7717/peerj.10849"]},"relHost":[{"titleAlt":[{"title":"Peer J"}],"pubHistory":["2013 -"],"id":{"zdb":["2703241-3"],"issn":["2167-8359"],"eki":["736558624"]},"part":{"extent":"18","volume":"9","text":"9(2021), Artikel-ID e10849, Seite 1-18","year":"2021","pages":"1-18"},"physDesc":[{"extent":"Online-Ressource"}],"recId":"736558624","disp":"modelBuildR an R package for model building and feature selection with erroneous classificationsPeerJ","origin":[{"publisher":"PeerJ, Inc.","dateIssuedDisp":"2013-","dateIssuedKey":"2013","publisherPlace":"London [u.a.]"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 31.05.13"],"title":[{"title_sort":"PeerJ","title":"PeerJ"}]}],"person":[{"role":"aut","given":"Maximilian","family":"Knoll","display":"Knoll, Maximilian"},{"role":"aut","given":"Jennifer","family":"Furkel","display":"Furkel, Jennifer"},{"family":"Debus","given":"Jürgen","role":"aut","display":"Debus, Jürgen"},{"family":"Abdollahi","given":"Amir","role":"aut","display":"Abdollahi, Amir"}],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"9 February 2021"}],"note":["Gesehen am 01.04.2021"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"modelBuildR","title":"modelBuildR","subtitle":"an R package for model building and feature selection with erroneous classifications"}],"physDesc":[{"extent":"18 S."}],"recId":"1753114543"} 
SRT |a KNOLLMAXIMMODELBUILD9202