Monochromatic cycle partitions in random graphs

Erdős, Gyárfás and Pyber showed that every r-edge-coloured complete graph Kn can be covered by 25 r2 log r vertex-disjoint monochromatic cycles (independent of n). Here we extend their result to the setting of binomial random graphs. That is, we show that if - - - - - , then with high probab...

Full description

Saved in:
Bibliographic Details
Main Authors: Lang, Richard (Author) , Lo, Allan (Author)
Format: Article (Journal)
Language:English
Published: 2021
In: Combinatorics, probability & computing
Year: 2021, Volume: 30, Issue: 1, Pages: 136-152
ISSN:1469-2163
DOI:10.1017/S0963548320000401
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1017/S0963548320000401
Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/combinatorics-probability-and-computing/article/monochromatic-cycle-partitions-in-random-graphs/880B178D98CC67FB4D353847851CF3A6
Get full text
Author Notes:Richard Lang and Allan Lo
Description
Summary:Erdős, Gyárfás and Pyber showed that every r-edge-coloured complete graph Kn can be covered by 25 r2 log r vertex-disjoint monochromatic cycles (independent of n). Here we extend their result to the setting of binomial random graphs. That is, we show that if - - - - - , then with high probability any r-edge-coloured G(n, p) can be covered by at most 1000r4 log r vertex-disjoint monochromatic cycles. This answers a question of Korándi, Mousset, Nenadov, Škorić and Sudakov.
Item Description:First published online 14 August 2020
Gesehen am 09.09.2021
Physical Description:Online Resource
ISSN:1469-2163
DOI:10.1017/S0963548320000401