Monochromatic cycle partitions in random graphs

Erdős, Gyárfás and Pyber showed that every r-edge-coloured complete graph Kn can be covered by 25 r2 log r vertex-disjoint monochromatic cycles (independent of n). Here we extend their result to the setting of binomial random graphs. That is, we show that if - - - - - , then with high probab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lang, Richard (VerfasserIn) , Lo, Allan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2021
In: Combinatorics, probability & computing
Year: 2021, Jahrgang: 30, Heft: 1, Pages: 136-152
ISSN:1469-2163
DOI:10.1017/S0963548320000401
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1017/S0963548320000401
Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/combinatorics-probability-and-computing/article/monochromatic-cycle-partitions-in-random-graphs/880B178D98CC67FB4D353847851CF3A6
Volltext
Verfasserangaben:Richard Lang and Allan Lo

MARC

LEADER 00000caa a2200000 c 4500
001 1753145406
003 DE-627
005 20220819154044.0
007 cr uuu---uuuuu
008 210406s2021 xx |||||o 00| ||eng c
024 7 |a 10.1017/S0963548320000401  |2 doi 
035 |a (DE-627)1753145406 
035 |a (DE-599)KXP1753145406 
035 |a (OCoLC)1341403329 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Lang, Richard  |e VerfasserIn  |0 (DE-588)122670008X  |0 (DE-627)1747737372  |4 aut 
245 1 0 |a Monochromatic cycle partitions in random graphs  |c Richard Lang and Allan Lo 
264 1 |c 2021 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a First published online 14 August 2020 
500 |a Gesehen am 09.09.2021 
520 |a Erdős, Gyárfás and Pyber showed that every r-edge-coloured complete graph Kn can be covered by 25 r2 log r vertex-disjoint monochromatic cycles (independent of n). Here we extend their result to the setting of binomial random graphs. That is, we show that if - - - - - , then with high probability any r-edge-coloured G(n, p) can be covered by at most 1000r4 log r vertex-disjoint monochromatic cycles. This answers a question of Korándi, Mousset, Nenadov, Škorić and Sudakov. 
650 4 |a 05C38 
650 4 |a 05D10 
700 1 |a Lo, Allan  |d 1983-  |e VerfasserIn  |0 (DE-588)1189854465  |0 (DE-627)1668609223  |4 aut 
773 0 8 |i Enthalten in  |t Combinatorics, probability & computing  |d Cambridge : Cambridge Univ. Press, 1992  |g 30(2021), 1, Seite 136-152  |h Online-Ressource  |w (DE-627)271601256  |w (DE-600)1481145-5  |w (DE-576)07870927X  |x 1469-2163  |7 nnas  |a Monochromatic cycle partitions in random graphs 
773 1 8 |g volume:30  |g year:2021  |g number:1  |g pages:136-152  |g extent:17  |a Monochromatic cycle partitions in random graphs 
856 4 0 |u https://doi.org/10.1017/S0963548320000401  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.cambridge.org/core/journals/combinatorics-probability-and-computing/article/monochromatic-cycle-partitions-in-random-graphs/880B178D98CC67FB4D353847851CF3A6  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210406 
993 |a Article 
994 |a 2021 
998 |g 122670008X  |a Lang, Richard  |m 122670008X:Lang, Richard  |d 110000  |d 110300  |e 110000PL122670008X  |e 110300PL122670008X  |k 0/110000/  |k 1/110000/110300/  |p 1  |x j 
999 |a KXP-PPN1753145406  |e 3902089873 
BIB |a Y 
SER |a journal 
JSO |a {"note":["First published online 14 August 2020","Gesehen am 09.09.2021"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1753145406","language":["eng"],"person":[{"family":"Lang","given":"Richard","roleDisplay":"VerfasserIn","display":"Lang, Richard","role":"aut"},{"role":"aut","display":"Lo, Allan","roleDisplay":"VerfasserIn","given":"Allan","family":"Lo"}],"title":[{"title":"Monochromatic cycle partitions in random graphs","title_sort":"Monochromatic cycle partitions in random graphs"}],"physDesc":[{"extent":"17 S."}],"relHost":[{"title":[{"title_sort":"Combinatorics, probability & computing","title":"Combinatorics, probability & computing","subtitle":"CPC"}],"titleAlt":[{"title":"CPC"}],"part":{"volume":"30","text":"30(2021), 1, Seite 136-152","extent":"17","year":"2021","pages":"136-152","issue":"1"},"pubHistory":["1.1992 -"],"language":["eng"],"recId":"271601256","type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Monochromatic cycle partitions in random graphsCombinatorics, probability & computing","note":["Gesehen am 05.03.2018"],"id":{"issn":["1469-2163"],"eki":["271601256"],"zdb":["1481145-5"]},"origin":[{"dateIssuedDisp":"1992-","dateIssuedKey":"1992","publisher":"Cambridge Univ. Press","publisherPlace":"Cambridge"}],"physDesc":[{"extent":"Online-Ressource"}]}],"name":{"displayForm":["Richard Lang and Allan Lo"]},"origin":[{"dateIssuedDisp":"2021","dateIssuedKey":"2021"}],"id":{"doi":["10.1017/S0963548320000401"],"eki":["1753145406"]}} 
SRT |a LANGRICHARMONOCHROMA2021