Higgs bundles and (A, B, A)-branes

Through the action of anti-holomorphic involutions on a compact Riemann surface Σ we construct families of (A, B, A)-branes $${\mathcal{L}_{G_{c}}}$$in the moduli spaces $${\mathcal{M}_{G_{c}}}$$of Gc-Higgs bundles on Σ. We study the geometry of these (A, B, A)-branes in terms of spectral data and s...

Full description

Saved in:
Bibliographic Details
Main Authors: Baraglia, David (Author) , Schaposnik, Laura P. (Author)
Format: Article (Journal)
Language:English
Published: 5 June 2014
In: Communications in mathematical physics
Year: 2014, Volume: 331, Issue: 3, Pages: 1271-1300
ISSN:1432-0916
DOI:10.1007/s00220-014-2053-6
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00220-014-2053-6
Get full text
Author Notes:David Baraglia, Laura P. Schaposnik
Description
Summary:Through the action of anti-holomorphic involutions on a compact Riemann surface Σ we construct families of (A, B, A)-branes $${\mathcal{L}_{G_{c}}}$$in the moduli spaces $${\mathcal{M}_{G_{c}}}$$of Gc-Higgs bundles on Σ. We study the geometry of these (A, B, A)-branes in terms of spectral data and show they have the structure of real integrable systems.
Item Description:Gesehen am 08.04.2021
Physical Description:Online Resource
ISSN:1432-0916
DOI:10.1007/s00220-014-2053-6