Higgs bundles and (A, B, A)-branes
Through the action of anti-holomorphic involutions on a compact Riemann surface Σ we construct families of (A, B, A)-branes $${\mathcal{L}_{G_{c}}}$$in the moduli spaces $${\mathcal{M}_{G_{c}}}$$of Gc-Higgs bundles on Σ. We study the geometry of these (A, B, A)-branes in terms of spectral data and s...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
5 June 2014
|
| In: |
Communications in mathematical physics
Year: 2014, Jahrgang: 331, Heft: 3, Pages: 1271-1300 |
| ISSN: | 1432-0916 |
| DOI: | 10.1007/s00220-014-2053-6 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00220-014-2053-6 |
| Verfasserangaben: | David Baraglia, Laura P. Schaposnik |
| Zusammenfassung: | Through the action of anti-holomorphic involutions on a compact Riemann surface Σ we construct families of (A, B, A)-branes $${\mathcal{L}_{G_{c}}}$$in the moduli spaces $${\mathcal{M}_{G_{c}}}$$of Gc-Higgs bundles on Σ. We study the geometry of these (A, B, A)-branes in terms of spectral data and show they have the structure of real integrable systems. |
|---|---|
| Beschreibung: | Gesehen am 08.04.2021 |
| Beschreibung: | Online Resource |
| ISSN: | 1432-0916 |
| DOI: | 10.1007/s00220-014-2053-6 |