Artificial intelligence and machine learning in prostate cancer patient management: current trends and future perspectives

Artificial intelligence (AI) is the field of computer science that aims to build smart devices performing tasks that currently require human intelligence. Through machine learning (ML), the deep learning (DL) model is teaching computers to learn by example, something that human beings are doing natu...

Full description

Saved in:
Bibliographic Details
Main Authors: Tătaru, Octavian Sabin (Author) , Vartolomei, Mihai Dorin (Author) , Rassweiler, Jens (Author) , Virgil, Oșan (Author) , Lucarelli, Giuseppe (Author) , Porpiglia, Francesco (Author) , Amparore, Daniele (Author) , Manfredi, Matteo (Author) , Carrieri, Giuseppe (Author) , Falagario, Ugo (Author) , Terracciano, Daniela (Author) , de Cobelli, Ottavio (Author) , Busetto, Gian Maria (Author) , Giudice, Francesco Del (Author) , Ferro, Matteo (Author)
Format: Article (Journal)
Language:English
Published: 20 February 2021
In: Diagnostics
Year: 2021, Volume: 11, Issue: 2, Pages: 1-20
ISSN:2075-4418
DOI:10.3390/diagnostics11020354
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/diagnostics11020354
Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2075-4418/11/2/354
Get full text
Author Notes:Octavian Sabin Tătaru, Mihai Dorin Vartolomei, Jens J. Rassweiler, Oșan Virgil, Giuseppe Lucarelli, Francesco Porpiglia, Daniele Amparore, Matteo Manfredi, Giuseppe Carrieri, Ugo Falagario, Daniela Terracciano, Ottavio de Cobelli, Gian Maria Busetto, Francesco Del Giudice and Matteo Ferro

MARC

LEADER 00000caa a2200000 c 4500
001 1753624207
003 DE-627
005 20220819161452.0
007 cr uuu---uuuuu
008 210412s2021 xx |||||o 00| ||eng c
024 7 |a 10.3390/diagnostics11020354  |2 doi 
035 |a (DE-627)1753624207 
035 |a (DE-599)KXP1753624207 
035 |a (OCoLC)1341404065 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Tătaru, Octavian Sabin  |e VerfasserIn  |0 (DE-588)1239849532  |0 (DE-627)1767919913  |4 aut 
245 1 0 |a Artificial intelligence and machine learning in prostate cancer patient management  |b current trends and future perspectives  |c Octavian Sabin Tătaru, Mihai Dorin Vartolomei, Jens J. Rassweiler, Oșan Virgil, Giuseppe Lucarelli, Francesco Porpiglia, Daniele Amparore, Matteo Manfredi, Giuseppe Carrieri, Ugo Falagario, Daniela Terracciano, Ottavio de Cobelli, Gian Maria Busetto, Francesco Del Giudice and Matteo Ferro 
264 1 |c 20 February 2021 
300 |a 20 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 26.08.2021 
520 |a Artificial intelligence (AI) is the field of computer science that aims to build smart devices performing tasks that currently require human intelligence. Through machine learning (ML), the deep learning (DL) model is teaching computers to learn by example, something that human beings are doing naturally. AI is revolutionizing healthcare. Digital pathology is becoming highly assisted by AI to help researchers in analyzing larger data sets and providing faster and more accurate diagnoses of prostate cancer lesions. When applied to diagnostic imaging, AI has shown excellent accuracy in the detection of prostate lesions as well as in the prediction of patient outcomes in terms of survival and treatment response. The enormous quantity of data coming from the prostate tumor genome requires fast, reliable and accurate computing power provided by machine learning algorithms. Radiotherapy is an essential part of the treatment of prostate cancer and it is often difficult to predict its toxicity for the patients. Artificial intelligence could have a future potential role in predicting how a patient will react to the therapy side effects. These technologies could provide doctors with better insights on how to plan radiotherapy treatment. The extension of the capabilities of surgical robots for more autonomous tasks will allow them to use information from the surgical field, recognize issues and implement the proper actions without the need for human intervention. 
650 4 |a artificial intelligence 
650 4 |a artificial neural network 
650 4 |a biomarker 
650 4 |a genomics 
650 4 |a prostate cancer 
700 1 |a Vartolomei, Mihai Dorin  |e VerfasserIn  |4 aut 
700 1 |a Rassweiler, Jens  |d 1955-  |e VerfasserIn  |0 (DE-588)1067480307  |0 (DE-627)818791225  |0 (DE-576)426692713  |4 aut 
700 1 |a Virgil, Oșan  |e VerfasserIn  |4 aut 
700 1 |a Lucarelli, Giuseppe  |e VerfasserIn  |4 aut 
700 1 |a Porpiglia, Francesco  |e VerfasserIn  |4 aut 
700 1 |a Amparore, Daniele  |e VerfasserIn  |4 aut 
700 1 |a Manfredi, Matteo  |e VerfasserIn  |4 aut 
700 1 |a Carrieri, Giuseppe  |e VerfasserIn  |4 aut 
700 1 |a Falagario, Ugo  |e VerfasserIn  |4 aut 
700 1 |a Terracciano, Daniela  |e VerfasserIn  |4 aut 
700 1 |a de Cobelli, Ottavio  |e VerfasserIn  |4 aut 
700 1 |a Busetto, Gian Maria  |e VerfasserIn  |4 aut 
700 1 |a Giudice, Francesco Del  |e VerfasserIn  |4 aut 
700 1 |a Ferro, Matteo  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Diagnostics  |d Basel : MDPI, 2011  |g 11(2021), 2, Artikel-ID 354, Seite 1-20  |h Online-Ressource  |w (DE-627)718627814  |w (DE-600)2662336-5  |w (DE-576)365413917  |x 2075-4418  |7 nnas  |a Artificial intelligence and machine learning in prostate cancer patient management current trends and future perspectives 
773 1 8 |g volume:11  |g year:2021  |g number:2  |g elocationid:354  |g pages:1-20  |g extent:20  |a Artificial intelligence and machine learning in prostate cancer patient management current trends and future perspectives 
856 4 0 |u https://doi.org/10.3390/diagnostics11020354  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2075-4418/11/2/354  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210412 
993 |a Article 
994 |a 2021 
998 |g 1067480307  |a Rassweiler, Jens  |m 1067480307:Rassweiler, Jens  |d 50000  |e 50000PR1067480307  |k 0/50000/  |p 3 
999 |a KXP-PPN1753624207  |e 3906077039 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"2011-","publisher":"MDPI","dateIssuedKey":"2011","publisherPlace":"Basel"}],"id":{"issn":["2075-4418"],"eki":["718627814"],"zdb":["2662336-5"]},"pubHistory":["1.2011 -"],"part":{"issue":"2","pages":"1-20","year":"2021","extent":"20","text":"11(2021), 2, Artikel-ID 354, Seite 1-20","volume":"11"},"disp":"Artificial intelligence and machine learning in prostate cancer patient management current trends and future perspectivesDiagnostics","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 28.05.2020"],"recId":"718627814","language":["eng"],"title":[{"subtitle":"open access journal","title":"Diagnostics","title_sort":"Diagnostics"}]}],"physDesc":[{"extent":"20 S."}],"id":{"doi":["10.3390/diagnostics11020354"],"eki":["1753624207"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"20 February 2021"}],"name":{"displayForm":["Octavian Sabin Tătaru, Mihai Dorin Vartolomei, Jens J. Rassweiler, Oșan Virgil, Giuseppe Lucarelli, Francesco Porpiglia, Daniele Amparore, Matteo Manfredi, Giuseppe Carrieri, Ugo Falagario, Daniela Terracciano, Ottavio de Cobelli, Gian Maria Busetto, Francesco Del Giudice and Matteo Ferro"]},"language":["eng"],"recId":"1753624207","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 26.08.2021"],"title":[{"subtitle":"current trends and future perspectives","title":"Artificial intelligence and machine learning in prostate cancer patient management","title_sort":"Artificial intelligence and machine learning in prostate cancer patient management"}],"person":[{"roleDisplay":"VerfasserIn","display":"Tătaru, Octavian Sabin","role":"aut","family":"Tătaru","given":"Octavian Sabin"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Vartolomei, Mihai Dorin","given":"Mihai Dorin","family":"Vartolomei"},{"given":"Jens","family":"Rassweiler","role":"aut","roleDisplay":"VerfasserIn","display":"Rassweiler, Jens"},{"display":"Virgil, Oșan","roleDisplay":"VerfasserIn","role":"aut","family":"Virgil","given":"Oșan"},{"family":"Lucarelli","given":"Giuseppe","roleDisplay":"VerfasserIn","display":"Lucarelli, Giuseppe","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Porpiglia, Francesco","given":"Francesco","family":"Porpiglia"},{"family":"Amparore","given":"Daniele","display":"Amparore, Daniele","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Manfredi","given":"Matteo","display":"Manfredi, Matteo","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Carrieri, Giuseppe","role":"aut","family":"Carrieri","given":"Giuseppe"},{"role":"aut","display":"Falagario, Ugo","roleDisplay":"VerfasserIn","given":"Ugo","family":"Falagario"},{"display":"Terracciano, Daniela","roleDisplay":"VerfasserIn","role":"aut","family":"Terracciano","given":"Daniela"},{"given":"Ottavio","family":"de Cobelli","role":"aut","display":"de Cobelli, Ottavio","roleDisplay":"VerfasserIn"},{"given":"Gian Maria","family":"Busetto","role":"aut","roleDisplay":"VerfasserIn","display":"Busetto, Gian Maria"},{"role":"aut","display":"Giudice, Francesco Del","roleDisplay":"VerfasserIn","given":"Francesco Del","family":"Giudice"},{"display":"Ferro, Matteo","roleDisplay":"VerfasserIn","role":"aut","family":"Ferro","given":"Matteo"}]} 
SRT |a TATARUOCTAARTIFICIAL2020