3D printing, computational modeling, and artificial intelligence for structural heart disease
Structural heart disease (SHD) is a new field within cardiovascular medicine. Traditional imaging modalities fall short in supporting the needs of SHD interventions, as they have been constructed around the concept of disease diagnosis. SHD interventions disrupt traditional concepts of imaging in re...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2021
|
| In: |
JACC Cardiovascular imaging
Year: 2021, Volume: 14, Issue: 1, Pages: 41-60 |
| ISSN: | 1876-7591 |
| DOI: | 10.1016/j.jcmg.2019.12.022 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jcmg.2019.12.022 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S1936878X20305155 |
| Author Notes: | Dee Dee Wang, Zhen Qian, Marija Vukicevic, Sandy Engelhardt, Arash Kheradvar, Chuck Zhang, Stephen H. Little, Johan Verjans, Dorin Comaniciu, William W. O’Neill, Mani A. Vannan |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1753624606 | ||
| 003 | DE-627 | ||
| 005 | 20230426175717.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210412s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.jcmg.2019.12.022 |2 doi | |
| 035 | |a (DE-627)1753624606 | ||
| 035 | |a (DE-599)KXP1753624606 | ||
| 035 | |a (OCoLC)1341403938 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Wang, Dee Dee |e VerfasserIn |0 (DE-588)1239848137 |0 (DE-627)1767917643 |4 aut | |
| 245 | 1 | 0 | |a 3D printing, computational modeling, and artificial intelligence for structural heart disease |c Dee Dee Wang, Zhen Qian, Marija Vukicevic, Sandy Engelhardt, Arash Kheradvar, Chuck Zhang, Stephen H. Little, Johan Verjans, Dorin Comaniciu, William W. O’Neill, Mani A. Vannan |
| 246 | 3 | 0 | |a three |
| 264 | 1 | |c 2021 | |
| 300 | |a 20 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Available online 26 August 2020 | ||
| 500 | |a Imaging for best outcomes in structural heart interventions: special issue | ||
| 500 | |a Gesehen am 26.08.2021 | ||
| 520 | |a Structural heart disease (SHD) is a new field within cardiovascular medicine. Traditional imaging modalities fall short in supporting the needs of SHD interventions, as they have been constructed around the concept of disease diagnosis. SHD interventions disrupt traditional concepts of imaging in requiring imaging to plan, simulate, and predict intraprocedural outcomes. In transcatheter SHD interventions, the absence of a gold-standard open cavity surgical field deprives physicians of the opportunity for tactile feedback and visual confirmation of cardiac anatomy. Hence, dependency on imaging in periprocedural guidance has led to evolution of a new generation of procedural skillsets, concept of a visual field, and technologies in the periprocedural planning period to accelerate preclinical device development, physician, and patient education. Adaptation of 3-dimensional (3D) printing in clinical care and procedural planning has demonstrated a reduction in early-operator learning curve for transcatheter interventions. Integration of computation modeling to 3D printing has accelerated research and development understanding of fluid mechanics within device testing. Application of 3D printing, computational modeling, and ultimately incorporation of artificial intelligence is changing the landscape of physician training and delivery of patient-centric care. Transcatheter structural heart interventions are requiring in-depth periprocedural understanding of cardiac pathophysiology and device interactions not afforded by traditional imaging metrics. | ||
| 650 | 4 | |a 3D printing | |
| 650 | 4 | |a artificial intelligence | |
| 650 | 4 | |a computational modeling | |
| 650 | 4 | |a computed tomography | |
| 650 | 4 | |a left atrial appendage | |
| 650 | 4 | |a structural heart disease | |
| 650 | 4 | |a transcatheter aortic valve replacement | |
| 650 | 4 | |a transcatheter mitral valve replacement | |
| 650 | 4 | |a transesophageal echocardiogram | |
| 700 | 1 | |a Qian, Zhen |e VerfasserIn |4 aut | |
| 700 | 1 | |a Vukicevic, Marija |e VerfasserIn |4 aut | |
| 700 | 1 | |a Engelhardt, Sandy |d 1987- |e VerfasserIn |0 (DE-588)1122674465 |0 (DE-627)876003080 |0 (DE-576)481436049 |4 aut | |
| 700 | 1 | |a Kheradvar, Arash |e VerfasserIn |4 aut | |
| 700 | 1 | |a Zhang, Chuck |e VerfasserIn |4 aut | |
| 700 | 1 | |a Little, Stephen H. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Verjans, Johan |e VerfasserIn |4 aut | |
| 700 | 1 | |a Comaniciu, Dorin |e VerfasserIn |4 aut | |
| 700 | 1 | |a O’Neill, William W. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Vannan, Mani A. |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a American College of Cardiology |t JACC Cardiovascular imaging |d Amsterdam : Elsevier, 2008 |g 14(2021), 1, Seite 41-60 |h Online-Ressource |w (DE-627)559427239 |w (DE-600)2412441-2 |w (DE-576)294402861 |x 1876-7591 |7 nnas |
| 773 | 1 | 8 | |g volume:14 |g year:2021 |g number:1 |g pages:41-60 |g extent:20 |a 3D printing, computational modeling, and artificial intelligence for structural heart disease |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.jcmg.2019.12.022 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S1936878X20305155 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210412 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1122674465 |a Engelhardt, Sandy |m 1122674465:Engelhardt, Sandy |d 910000 |d 910100 |e 910000PE1122674465 |e 910100PE1122674465 |k 0/910000/ |k 1/910000/910100/ |p 4 | ||
| 999 | |a KXP-PPN1753624606 |e 3906078159 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"note":["Available online 26 August 2020","Imaging for best outcomes in structural heart interventions: special issue","Gesehen am 26.08.2021"],"relHost":[{"corporate":[{"role":"aut","display":"American College of Cardiology"}],"note":["Gesehen am 17.01.2025","Fortsetzung der Druck-Ausgabe"],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"subtitle":"a journal of the American College of Cardiology","title_sort":"JACC Cardiovascular imaging","title":"JACC Cardiovascular imaging"}],"origin":[{"publisher":"Elsevier ; American College of Cardiology Foundation","publisherPlace":"Amsterdam ; New York, NY","dateIssuedKey":"2008","dateIssuedDisp":"2008-"}],"part":{"year":"2021","extent":"20","issue":"1","volume":"14","pages":"41-60","text":"14(2021), 1, Seite 41-60"},"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"559427239","id":{"issn":["1876-7591"],"eki":["559427239"],"zdb":["2412441-2"]},"pubHistory":["1.2008 -"],"language":["eng"],"disp":"American College of CardiologyJACC Cardiovascular imaging"}],"physDesc":[{"extent":"20 S."}],"title":[{"title":"3D printing, computational modeling, and artificial intelligence for structural heart disease","title_sort":"3D printing, computational modeling, and artificial intelligence for structural heart disease"}],"person":[{"display":"Wang, Dee Dee","given":"Dee Dee","role":"aut","family":"Wang"},{"family":"Qian","role":"aut","given":"Zhen","display":"Qian, Zhen"},{"role":"aut","given":"Marija","family":"Vukicevic","display":"Vukicevic, Marija"},{"family":"Engelhardt","given":"Sandy","role":"aut","display":"Engelhardt, Sandy"},{"family":"Kheradvar","given":"Arash","role":"aut","display":"Kheradvar, Arash"},{"family":"Zhang","given":"Chuck","role":"aut","display":"Zhang, Chuck"},{"display":"Little, Stephen H.","role":"aut","given":"Stephen H.","family":"Little"},{"family":"Verjans","role":"aut","given":"Johan","display":"Verjans, Johan"},{"display":"Comaniciu, Dorin","family":"Comaniciu","role":"aut","given":"Dorin"},{"display":"O’Neill, William W.","given":"William W.","role":"aut","family":"O’Neill"},{"display":"Vannan, Mani A.","given":"Mani A.","role":"aut","family":"Vannan"}],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2021"}],"name":{"displayForm":["Dee Dee Wang, Zhen Qian, Marija Vukicevic, Sandy Engelhardt, Arash Kheradvar, Chuck Zhang, Stephen H. Little, Johan Verjans, Dorin Comaniciu, William W. O’Neill, Mani A. Vannan"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1753624606","id":{"doi":["10.1016/j.jcmg.2019.12.022"],"eki":["1753624606"]},"language":["eng"]} | ||
| SRT | |a WANGDEEDEE3DPRINTING2021 | ||