Association between different scale bars in dermoscopic images and diagnostic performance of a market-approved deep learning convolutional neural network for melanoma recognition

Background - Studies systematically unravelling possible causes for false diagnoses of deep learning convolutional neural networks (CNNs) are scarce, yet needed before broader application. - Objectives - The objective of the study was to investigate whether scale bars in dermoscopic images are assoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Winkler, Julia K. (VerfasserIn) , Kommoss, Katharina (VerfasserIn) , Müller-Christmann, Christine (VerfasserIn) , Toberer, Ferdinand (VerfasserIn) , Enk, Alexander (VerfasserIn) , Abassi, Mohamed S. (VerfasserIn) , Fuchs, Tobias (VerfasserIn) , Hänßle, Holger (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 January 2021
In: European journal of cancer
Year: 2021, Jahrgang: 145, Pages: 146-154
ISSN:1879-0852
DOI:10.1016/j.ejca.2020.12.010
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.ejca.2020.12.010
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0959804920314209
Volltext
Verfasserangaben:Julia K. Winkler, Katharina Sies, Christine Fink, Ferdinand Toberer, Alexander Enk, Mohamed S. Abassi, Tobias Fuchs, Holger A. Haenssle

MARC

LEADER 00000caa a2200000 c 4500
001 1754706029
003 DE-627
005 20240413193255.0
007 cr uuu---uuuuu
008 210414s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ejca.2020.12.010  |2 doi 
035 |a (DE-627)1754706029 
035 |a (DE-599)KXP1754706029 
035 |a (OCoLC)1341404206 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Winkler, Julia K.  |d 1987-  |e VerfasserIn  |0 (DE-588)1038218993  |0 (DE-627)756780721  |0 (DE-576)392196514  |4 aut 
245 1 0 |a Association between different scale bars in dermoscopic images and diagnostic performance of a market-approved deep learning convolutional neural network for melanoma recognition  |c Julia K. Winkler, Katharina Sies, Christine Fink, Ferdinand Toberer, Alexander Enk, Mohamed S. Abassi, Tobias Fuchs, Holger A. Haenssle 
264 1 |c 16 January 2021 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.07.2021 
520 |a Background - Studies systematically unravelling possible causes for false diagnoses of deep learning convolutional neural networks (CNNs) are scarce, yet needed before broader application. - Objectives - The objective of the study was to investigate whether scale bars in dermoscopic images are associated with the diagnostic accuracy of a market-approved CNN. - Methods - This cross-sectional analysis applied a CNN trained with more than 150,000 images (Moleanalyzer-pro®, FotoFinder Systems Inc., Bad Birnbach, Germany) to investigate seven dermoscopic image sets depicting the same 130 melanocytic lesions (107 nevi, 23 melanomas) without or with digitally superimposed scale bars of different manufacturers. Sensitivity, specificity and area under the curve (AUC) of receiver operating characteristics (ROC) for the CNN's binary classification of images with or without superimposed scale bars were assessed. - Results - Six dermoscopic image sets with different scale bars and one control set without scale bars (overall 910 images) were submitted to CNN analysis. In images without scale bars, the CNN attained a sensitivity [95% confidence interval] of 87.0% [67.9%-95.5%] and a specificity of 87.9% [80.3%-92.8%]. ROC AUC was 0.953 [0.914-0.992]. Scale bars were not associated with significant changes in sensitivity (range 87%-95.7%, all p ≥ 1.0). However, four scale bars induced a decrease of the CNN's specificity (range 0%-43.9%, all p < 0.001). Moreover, ROC AUC was significantly reduced by two scale bars (range 0.520-0.848, both p ≤ 0.042). - Conclusions - Superimposed scale bars in dermoscopic images may impair the CNN's diagnostic accuracy, mostly by increasing the rate of the false-positive diagnoses. We recommend avoiding scale bars in images intended for CNN analysis unless specific measures counteracting effects are implemented. - Clinical trial number - This study was registered at the German Clinical Trial Register (DRKS-Study-ID: DRKS00013570; URL: https://www.drks.de/drks_web/). 
650 4 |a Convolutional neural network 
650 4 |a Deep learning 
650 4 |a Dermoscopy 
650 4 |a Melanoma 
650 4 |a Nevus 
650 4 |a Scale bar 
700 1 |a Kommoss, Katharina  |e VerfasserIn  |0 (DE-588)1216661227  |0 (DE-627)1727913124  |4 aut 
700 1 |a Müller-Christmann, Christine  |d 1983-  |e VerfasserIn  |0 (DE-588)143738127  |0 (DE-627)654330387  |0 (DE-576)338647651  |4 aut 
700 1 |a Toberer, Ferdinand  |d 1981-  |e VerfasserIn  |0 (DE-588)102155832X  |0 (DE-627)715821962  |0 (DE-576)362852367  |4 aut 
700 1 |a Enk, Alexander  |d 1963-  |e VerfasserIn  |0 (DE-588)1032757140  |0 (DE-627)739272535  |0 (DE-576)166173517  |4 aut 
700 1 |a Abassi, Mohamed S.  |e VerfasserIn  |4 aut 
700 1 |a Fuchs, Tobias  |e VerfasserIn  |4 aut 
700 1 |a Hänßle, Holger  |e VerfasserIn  |0 (DE-588)1074971531  |0 (DE-627)832791733  |0 (DE-576)443174598  |4 aut 
773 0 8 |i Enthalten in  |t European journal of cancer  |d Amsterdam [u.a.] : Elsevier, 1992  |g 145(2021), Seite 146-154  |w (DE-627)266883400  |w (DE-600)1468190-0  |w (DE-576)090954173  |x 1879-0852  |7 nnas  |a Association between different scale bars in dermoscopic images and diagnostic performance of a market-approved deep learning convolutional neural network for melanoma recognition 
773 1 8 |g volume:145  |g year:2021  |g pages:146-154  |g extent:9  |a Association between different scale bars in dermoscopic images and diagnostic performance of a market-approved deep learning convolutional neural network for melanoma recognition 
856 4 0 |u https://doi.org/10.1016/j.ejca.2020.12.010  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0959804920314209  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210414 
993 |a Article 
994 |a 2021 
998 |g 1074971531  |a Hänßle, Holger  |m 1074971531:Hänßle, Holger  |d 910000  |d 911300  |e 910000PH1074971531  |e 911300PH1074971531  |k 0/910000/  |k 1/910000/911300/  |p 8  |y j 
998 |g 1032757140  |a Enk, Alexander  |m 1032757140:Enk, Alexander  |d 910000  |d 911300  |e 910000PE1032757140  |e 911300PE1032757140  |k 0/910000/  |k 1/910000/911300/  |p 5 
998 |g 102155832X  |a Toberer, Ferdinand  |m 102155832X:Toberer, Ferdinand  |d 910000  |d 911300  |e 910000PT102155832X  |e 911300PT102155832X  |k 0/910000/  |k 1/910000/911300/  |p 4 
998 |g 143738127  |a Müller-Christmann, Christine  |m 143738127:Müller-Christmann, Christine  |d 910000  |d 911300  |d 50000  |e 910000PM143738127  |e 911300PM143738127  |e 50000PM143738127  |k 0/910000/  |k 1/910000/911300/  |k 0/50000/  |p 3 
998 |g 1216661227  |a Kommoss, Katharina  |m 1216661227:Kommoss, Katharina  |d 910000  |d 911300  |e 910000PK1216661227  |e 911300PK1216661227  |k 0/910000/  |k 1/910000/911300/  |p 2 
998 |g 1038218993  |a Winkler, Julia K.  |m 1038218993:Winkler, Julia K.  |d 910000  |d 911300  |e 910000PW1038218993  |e 911300PW1038218993  |k 0/910000/  |k 1/910000/911300/  |p 1  |x j 
999 |a KXP-PPN1754706029  |e 3909034918 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 28.07.2021"],"recId":"1754706029","name":{"displayForm":["Julia K. Winkler, Katharina Sies, Christine Fink, Ferdinand Toberer, Alexander Enk, Mohamed S. Abassi, Tobias Fuchs, Holger A. Haenssle"]},"relHost":[{"pubHistory":["28.1992 -"],"note":["Gesehen am 21.03.24","Ungezählte Beil.: Supplement"],"recId":"266883400","disp":"Association between different scale bars in dermoscopic images and diagnostic performance of a market-approved deep learning convolutional neural network for melanoma recognitionEuropean journal of cancer","part":{"year":"2021","extent":"9","volume":"145","pages":"146-154","text":"145(2021), Seite 146-154"},"title":[{"title_sort":"European journal of cancer","title":"European journal of cancer"}],"titleAlt":[{"title":"EJC online"}],"corporate":[{"display":"European Organization for Research on Treatment of Cancer","role":"isb"},{"display":"European Association for Cancer Research","role":"isb"},{"display":"European School of Oncology","role":"isb"}],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"id":{"eki":["266883400"],"zdb":["1468190-0"],"issn":["1879-0852"]},"origin":[{"publisherPlace":"Amsterdam [u.a.] ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1992-","dateIssuedKey":"1992","publisher":"Elsevier ; Pergamon Press"}]}],"person":[{"role":"aut","given":"Julia K.","display":"Winkler, Julia K.","family":"Winkler"},{"role":"aut","display":"Kommoss, Katharina","family":"Kommoss","given":"Katharina"},{"role":"aut","family":"Müller-Christmann","display":"Müller-Christmann, Christine","given":"Christine"},{"family":"Toberer","display":"Toberer, Ferdinand","given":"Ferdinand","role":"aut"},{"role":"aut","given":"Alexander","display":"Enk, Alexander","family":"Enk"},{"role":"aut","display":"Abassi, Mohamed S.","family":"Abassi","given":"Mohamed S."},{"role":"aut","given":"Tobias","family":"Fuchs","display":"Fuchs, Tobias"},{"role":"aut","given":"Holger","display":"Hänßle, Holger","family":"Hänßle"}],"title":[{"title_sort":"Association between different scale bars in dermoscopic images and diagnostic performance of a market-approved deep learning convolutional neural network for melanoma recognition","title":"Association between different scale bars in dermoscopic images and diagnostic performance of a market-approved deep learning convolutional neural network for melanoma recognition"}],"physDesc":[{"extent":"9 S."}],"id":{"doi":["10.1016/j.ejca.2020.12.010"],"eki":["1754706029"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"16 January 2021"}]} 
SRT |a WINKLERJULASSOCIATIO1620