Unsupervised behaviour analysis and magnification (uBAM) using deep learning

Motor behaviour analysis is essential to biomedical research and clinical diagnostics as it provides a non-invasive strategy for identifying motor impairment and its change caused by interventions. State-of-the-art instrumented movement analysis is time- and cost-intensive, because it requires the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brattoli, Biagio (VerfasserIn) , Büchler, Uta (VerfasserIn) , Dorkenwald, Michael (VerfasserIn) , Reiser, Philipp (VerfasserIn) , Filli, Linard (VerfasserIn) , Helmchen, Fritjof (VerfasserIn) , Wahl, Anna-Sophia (VerfasserIn) , Ommer, Björn (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 05 April 2021
In: Nature machine intelligence
Year: 2021, Jahrgang: 3, Pages: 495-506
ISSN:2522-5839
DOI:10.1038/s42256-021-00326-x
Online-Zugang:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1038/s42256-021-00326-x
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s42256-021-00326-x
Volltext
Verfasserangaben:Biagio Brattoli, Uta Büchler, Michael Dorkenwald, Philipp Reiser, Linard Filli, Fritjof Helmchen, Anna-Sophia Wahl and Björn Ommer

MARC

LEADER 00000caa a22000002c 4500
001 1755430590
003 DE-627
005 20230427042535.0
007 cr uuu---uuuuu
008 210420s2021 xx |||||o 00| ||eng c
024 7 |a 10.1038/s42256-021-00326-x  |2 doi 
035 |a (DE-627)1755430590 
035 |a (DE-599)KXP1755430590 
035 |a (OCoLC)1341404988 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Brattoli, Biagio  |e VerfasserIn  |0 (DE-588)1150865695  |0 (DE-627)1011126354  |0 (DE-576)497297523  |4 aut 
245 1 0 |a Unsupervised behaviour analysis and magnification (uBAM) using deep learning  |c Biagio Brattoli, Uta Büchler, Michael Dorkenwald, Philipp Reiser, Linard Filli, Fritjof Helmchen, Anna-Sophia Wahl and Björn Ommer 
264 1 |c 05 April 2021 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 20.04.2021 
520 |a Motor behaviour analysis is essential to biomedical research and clinical diagnostics as it provides a non-invasive strategy for identifying motor impairment and its change caused by interventions. State-of-the-art instrumented movement analysis is time- and cost-intensive, because it requires the placement of physical or virtual markers. As well as the effort required for marking the keypoints or annotations necessary for training or fine-tuning a detector, users need to know the interesting behaviour beforehand to provide meaningful keypoints. Here, we introduce unsupervised behaviour analysis and magnification (uBAM), an automatic deep learning algorithm for analysing behaviour by discovering and magnifying deviations. A central aspect is unsupervised learning of posture and behaviour representations to enable an objective comparison of movement. Besides discovering and quantifying deviations in behaviour, we also propose a generative model for visually magnifying subtle behaviour differences directly in a video without requiring a detour via keypoints or annotations. Essential for this magnification of deviations, even across different individuals, is a disentangling of appearance and behaviour. Evaluations on rodents and human patients with neurological diseases demonstrate the wide applicability of our approach. Moreover, combining optogenetic stimulation with our unsupervised behaviour analysis shows its suitability as a non-invasive diagnostic tool correlating function to brain plasticity. 
700 1 |a Büchler, Uta  |e VerfasserIn  |0 (DE-588)1150865377  |0 (DE-627)1011125986  |0 (DE-576)497297620  |4 aut 
700 1 |a Dorkenwald, Michael  |e VerfasserIn  |0 (DE-588)1231821612  |0 (DE-627)1755432399  |4 aut 
700 1 |a Reiser, Philipp  |e VerfasserIn  |4 aut 
700 1 |a Filli, Linard  |e VerfasserIn  |4 aut 
700 1 |a Helmchen, Fritjof  |e VerfasserIn  |4 aut 
700 1 |a Wahl, Anna-Sophia  |e VerfasserIn  |4 aut 
700 1 |a Ommer, Björn  |d 1981-  |e VerfasserIn  |0 (DE-588)1034893106  |0 (DE-627)746457510  |0 (DE-576)382507916  |4 aut 
773 0 8 |i Enthalten in  |t Nature machine intelligence  |d [London] : Springer Nature Publishing, 2019  |g 3(2021), Seite 495-506  |h Online-Ressource  |w (DE-627)1025147669  |w (DE-600)2933875-X  |w (DE-576)506804771  |x 2522-5839  |7 nnas  |a Unsupervised behaviour analysis and magnification (uBAM) using deep learning 
773 1 8 |g volume:3  |g year:2021  |g pages:495-506  |g extent:12  |a Unsupervised behaviour analysis and magnification (uBAM) using deep learning 
856 4 0 |u https://doi.org/10.1038/s42256-021-00326-x  |x Resolving-System  |x Verlag  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s42256-021-00326-x  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210420 
993 |a Article 
994 |a 2021 
998 |g 1034893106  |a Ommer, Björn  |m 1034893106:Ommer, Björn  |d 700000  |d 708070  |e 700000PO1034893106  |e 708070PO1034893106  |k 0/700000/  |k 1/700000/708070/  |p 8  |y j 
998 |g 1231821612  |a Dorkenwald, Michael  |m 1231821612:Dorkenwald, Michael  |d 700000  |d 708000  |e 700000PD1231821612  |e 708000PD1231821612  |k 0/700000/  |k 1/700000/708000/  |p 3 
998 |g 1150865377  |a Büchler, Uta  |m 1150865377:Büchler, Uta  |d 700000  |d 708000  |e 700000PB1150865377  |e 708000PB1150865377  |k 0/700000/  |k 1/700000/708000/  |p 2 
998 |g 1150865695  |a Brattoli, Biagio  |m 1150865695:Brattoli, Biagio  |p 1  |x j 
999 |a KXP-PPN1755430590  |e 3913817921 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title":"Unsupervised behaviour analysis and magnification (uBAM) using deep learning","title_sort":"Unsupervised behaviour analysis and magnification (uBAM) using deep learning"}],"person":[{"family":"Brattoli","given":"Biagio","roleDisplay":"VerfasserIn","display":"Brattoli, Biagio","role":"aut"},{"display":"Büchler, Uta","roleDisplay":"VerfasserIn","role":"aut","family":"Büchler","given":"Uta"},{"roleDisplay":"VerfasserIn","display":"Dorkenwald, Michael","role":"aut","family":"Dorkenwald","given":"Michael"},{"family":"Reiser","given":"Philipp","display":"Reiser, Philipp","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Filli","given":"Linard","roleDisplay":"VerfasserIn","display":"Filli, Linard","role":"aut"},{"given":"Fritjof","family":"Helmchen","role":"aut","roleDisplay":"VerfasserIn","display":"Helmchen, Fritjof"},{"roleDisplay":"VerfasserIn","display":"Wahl, Anna-Sophia","role":"aut","family":"Wahl","given":"Anna-Sophia"},{"family":"Ommer","given":"Björn","display":"Ommer, Björn","roleDisplay":"VerfasserIn","role":"aut"}],"note":["Gesehen am 20.04.2021"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1755430590","language":["eng"],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"05 April 2021"}],"id":{"eki":["1755430590"],"doi":["10.1038/s42256-021-00326-x"]},"name":{"displayForm":["Biagio Brattoli, Uta Büchler, Michael Dorkenwald, Philipp Reiser, Linard Filli, Fritjof Helmchen, Anna-Sophia Wahl and Björn Ommer"]},"physDesc":[{"extent":"12 S."}],"relHost":[{"disp":"Unsupervised behaviour analysis and magnification (uBAM) using deep learningNature machine intelligence","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 30.04.25"],"recId":"1025147669","language":["eng"],"pubHistory":["Volume 1, no. 1 (January 2019)-"],"part":{"year":"2021","pages":"495-506","text":"3(2021), Seite 495-506","volume":"3","extent":"12"},"title":[{"title_sort":"Nature machine intelligence","title":"Nature machine intelligence"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"[London]","publisher":"Springer Nature Publishing","dateIssuedDisp":"[2019]-"}],"id":{"zdb":["2933875-X"],"eki":["1025147669"],"issn":["2522-5839"]}}]} 
SRT |a BRATTOLIBIUNSUPERVIS0520