Robustness of convolutional neural networks in recognition of pigmented skin lesions

Background - A basic requirement for artificial intelligence (AI)-based image analysis systems, which are to be integrated into clinical practice, is a high robustness. Minor changes in how those images are acquired, for example, during routine skin cancer screening, should not change the diagnosis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maron, Roman C. (VerfasserIn) , Haggenmüller, Sarah (VerfasserIn) , Kalle, Christof von (VerfasserIn) , Utikal, Jochen (VerfasserIn) , Meier, Friedegund (VerfasserIn) , Gellrich, Frank F. (VerfasserIn) , Hauschild, Axel (VerfasserIn) , French, Lars E. (VerfasserIn) , Schlaak, Max (VerfasserIn) , Ghoreschi, Kamran (VerfasserIn) , Kutzner, Heinz (VerfasserIn) , Heppt, Markus V. (VerfasserIn) , Haferkamp, Sebastian (VerfasserIn) , Sondermann, Wiebke (VerfasserIn) , Schadendorf, Dirk (VerfasserIn) , Schilling, Bastian (VerfasserIn) , Hekler, Achim (VerfasserIn) , Krieghoff-Henning, Eva (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn) , Fröhling, Stefan (VerfasserIn) , Lipka, Daniel (VerfasserIn) , Brinker, Titus Josef (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 7 January 2021
In: European journal of cancer
Year: 2021, Jahrgang: 145, Pages: 81-91
ISSN:1879-0852
DOI:10.1016/j.ejca.2020.11.020
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.ejca.2020.11.020
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0959804920313575
Volltext
Verfasserangaben:Roman C. Maron, Sarah Haggenmüller, Christof von Kalle, Jochen S. Utikal, Friedegund Meier, Frank F. Gellrich, Axel Hauschild, Lars E. French, Max Schlaak, Kamran Ghoreschi, Heinz Kutzner, Markus V. Heppt, Sebastian Haferkamp, Wiebke Sondermann, Dirk Schadendorf, Bastian Schilling, Achim Hekler, Eva Krieghoff-Henning, Jakob N. Kather, Stefan Fröhling, Daniel B. Lipka, Titus J. Brinker

MARC

LEADER 00000caa a2200000 c 4500
001 1755523629
003 DE-627
005 20250701092505.0
007 cr uuu---uuuuu
008 210421s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ejca.2020.11.020  |2 doi 
035 |a (DE-627)1755523629 
035 |a (DE-599)KXP1755523629 
035 |a (OCoLC)1341405174 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Maron, Roman C.  |e VerfasserIn  |0 (DE-588)1198959851  |0 (DE-627)1681173867  |4 aut 
245 1 0 |a Robustness of convolutional neural networks in recognition of pigmented skin lesions  |c Roman C. Maron, Sarah Haggenmüller, Christof von Kalle, Jochen S. Utikal, Friedegund Meier, Frank F. Gellrich, Axel Hauschild, Lars E. French, Max Schlaak, Kamran Ghoreschi, Heinz Kutzner, Markus V. Heppt, Sebastian Haferkamp, Wiebke Sondermann, Dirk Schadendorf, Bastian Schilling, Achim Hekler, Eva Krieghoff-Henning, Jakob N. Kather, Stefan Fröhling, Daniel B. Lipka, Titus J. Brinker 
264 1 |c 7 January 2021 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 21.04.2021 
520 |a Background - A basic requirement for artificial intelligence (AI)-based image analysis systems, which are to be integrated into clinical practice, is a high robustness. Minor changes in how those images are acquired, for example, during routine skin cancer screening, should not change the diagnosis of such assistance systems. - Objective - To quantify to what extent minor image perturbations affect the convolutional neural network (CNN)-mediated skin lesion classification and to evaluate three possible solutions for this problem (additional data augmentation, test-time augmentation, anti-aliasing). - Methods - We trained three commonly used CNN architectures to differentiate between dermoscopic melanoma and nevus images. Subsequently, their performance and susceptibility to minor changes (‘brittleness’) was tested on two distinct test sets with multiple images per lesion. For the first set, image changes, such as rotations or zooms, were generated artificially. The second set contained natural changes that stemmed from multiple photographs taken of the same lesions. - Results - All architectures exhibited brittleness on the artificial and natural test set. The three reviewed methods were able to decrease brittleness to varying degrees while still maintaining performance. The observed improvement was greater for the artificial than for the natural test set, where enhancements were minor. - Conclusions - Minor image changes, relatively inconspicuous for humans, can have an effect on the robustness of CNNs differentiating skin lesions. By the methods tested here, this effect can be reduced, but not fully eliminated. Thus, further research to sustain the performance of AI classifiers is needed to facilitate the translation of such systems into the clinic. 
650 4 |a Artificial intelligence 
650 4 |a Deep learning 
650 4 |a Dermatology 
650 4 |a Machine learning 
650 4 |a Melanoma 
650 4 |a Neural networks 
650 4 |a Nevus 
650 4 |a Skin neoplasms 
700 1 |a Haggenmüller, Sarah  |d 1995-  |e VerfasserIn  |0 (DE-588)1231946709  |0 (DE-627)1755618042  |4 aut 
700 1 |a Kalle, Christof von  |d 1962-  |e VerfasserIn  |0 (DE-588)1036481115  |0 (DE-627)75107926X  |0 (DE-576)168957396  |4 aut 
700 1 |a Utikal, Jochen  |d 1974-  |e VerfasserIn  |0 (DE-588)1026463750  |0 (DE-627)726765015  |0 (DE-576)371816580  |4 aut 
700 1 |a Meier, Friedegund  |e VerfasserIn  |4 aut 
700 1 |a Gellrich, Frank F.  |e VerfasserIn  |4 aut 
700 1 |a Hauschild, Axel  |e VerfasserIn  |4 aut 
700 1 |a French, Lars E.  |e VerfasserIn  |4 aut 
700 1 |a Schlaak, Max  |e VerfasserIn  |4 aut 
700 1 |a Ghoreschi, Kamran  |e VerfasserIn  |4 aut 
700 1 |a Kutzner, Heinz  |e VerfasserIn  |4 aut 
700 1 |a Heppt, Markus V.  |d 1987-  |e VerfasserIn  |0 (DE-588)1072242346  |0 (DE-627)827081111  |0 (DE-576)43371767X  |4 aut 
700 1 |a Haferkamp, Sebastian  |d 1978-  |e VerfasserIn  |0 (DE-588)132018330  |0 (DE-627)51684296X  |0 (DE-576)298896044  |4 aut 
700 1 |a Sondermann, Wiebke  |e VerfasserIn  |4 aut 
700 1 |a Schadendorf, Dirk  |d 1960-  |e VerfasserIn  |0 (DE-588)11142576X  |0 (DE-627)499566076  |0 (DE-576)289702275  |4 aut 
700 1 |a Schilling, Bastian  |e VerfasserIn  |4 aut 
700 1 |a Hekler, Achim  |e VerfasserIn  |0 (DE-588)1196829314  |0 (DE-627)1678721344  |4 aut 
700 1 |a Krieghoff-Henning, Eva  |d 1976-  |e VerfasserIn  |0 (DE-588)132407914  |0 (DE-627)52267786X  |0 (DE-576)299126706  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
700 1 |a Fröhling, Stefan  |d 1969-  |e VerfasserIn  |0 (DE-588)120890046  |0 (DE-627)080950302  |0 (DE-576)188733930  |4 aut 
700 1 |a Lipka, Daniel  |d 1976-  |e VerfasserIn  |0 (DE-588)131915312  |0 (DE-627)516076426  |0 (DE-576)298833328  |4 aut 
700 1 |a Brinker, Titus Josef  |d 1990-  |e VerfasserIn  |0 (DE-588)1156309395  |0 (DE-627)1018860487  |0 (DE-576)502097434  |4 aut 
773 0 8 |i Enthalten in  |t European journal of cancer  |d Amsterdam [u.a.] : Elsevier, 1992  |g 145(2021), Seite 81-91  |w (DE-627)266883400  |w (DE-600)1468190-0  |w (DE-576)090954173  |x 1879-0852  |7 nnas  |a Robustness of convolutional neural networks in recognition of pigmented skin lesions 
773 1 8 |g volume:145  |g year:2021  |g pages:81-91  |g extent:11  |a Robustness of convolutional neural networks in recognition of pigmented skin lesions 
856 4 0 |u https://doi.org/10.1016/j.ejca.2020.11.020  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0959804920313575  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210421 
993 |a Article 
994 |a 2021 
998 |g 1156309395  |a Brinker, Titus Josef  |m 1156309395:Brinker, Titus Josef  |d 50000  |e 50000PB1156309395  |k 0/50000/  |p 22  |y j 
998 |g 131915312  |a Lipka, Daniel  |m 131915312:Lipka, Daniel  |d 140000  |e 140000PL131915312  |k 0/140000/  |p 21 
998 |g 120890046  |a Fröhling, Stefan  |m 120890046:Fröhling, Stefan  |d 50000  |e 50000PF120890046  |k 0/50000/  |p 20 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 19 
998 |g 11142576X  |a Schadendorf, Dirk  |m 11142576X:Schadendorf, Dirk  |d 50000  |e 50000PS11142576X  |k 0/50000/  |p 15 
998 |g 1026463750  |a Utikal, Jochen  |m 1026463750:Utikal, Jochen  |d 60000  |e 60000PU1026463750  |k 0/60000/  |p 2 
998 |g 1036481115  |a Kalle, Christof von  |m 1036481115:Kalle, Christof von  |d 50000  |e 50000PK1036481115  |k 0/50000/  |p 3 
998 |g 1231946709  |a Haggenmüller, Sarah  |m 1231946709:Haggenmüller, Sarah  |d 60000  |e 60000PH1231946709  |k 0/60000/  |p 2 
999 |a KXP-PPN1755523629  |e 3914064250 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"person":[{"display":"Maron, Roman C.","family":"Maron","given":"Roman C.","role":"aut"},{"given":"Sarah","role":"aut","display":"Haggenmüller, Sarah","family":"Haggenmüller"},{"given":"Christof von","role":"aut","family":"Kalle","display":"Kalle, Christof von"},{"family":"Utikal","display":"Utikal, Jochen","role":"aut","given":"Jochen"},{"role":"aut","given":"Friedegund","family":"Meier","display":"Meier, Friedegund"},{"given":"Frank F.","role":"aut","display":"Gellrich, Frank F.","family":"Gellrich"},{"display":"Hauschild, Axel","family":"Hauschild","role":"aut","given":"Axel"},{"display":"French, Lars E.","family":"French","given":"Lars E.","role":"aut"},{"given":"Max","role":"aut","display":"Schlaak, Max","family":"Schlaak"},{"display":"Ghoreschi, Kamran","family":"Ghoreschi","role":"aut","given":"Kamran"},{"given":"Heinz","role":"aut","display":"Kutzner, Heinz","family":"Kutzner"},{"role":"aut","given":"Markus V.","display":"Heppt, Markus V.","family":"Heppt"},{"role":"aut","given":"Sebastian","display":"Haferkamp, Sebastian","family":"Haferkamp"},{"role":"aut","given":"Wiebke","display":"Sondermann, Wiebke","family":"Sondermann"},{"family":"Schadendorf","display":"Schadendorf, Dirk","role":"aut","given":"Dirk"},{"display":"Schilling, Bastian","family":"Schilling","role":"aut","given":"Bastian"},{"family":"Hekler","display":"Hekler, Achim","role":"aut","given":"Achim"},{"given":"Eva","role":"aut","display":"Krieghoff-Henning, Eva","family":"Krieghoff-Henning"},{"role":"aut","given":"Jakob Nikolas","family":"Kather","display":"Kather, Jakob Nikolas"},{"family":"Fröhling","display":"Fröhling, Stefan","given":"Stefan","role":"aut"},{"family":"Lipka","display":"Lipka, Daniel","given":"Daniel","role":"aut"},{"given":"Titus Josef","role":"aut","display":"Brinker, Titus Josef","family":"Brinker"}],"recId":"1755523629","relHost":[{"id":{"eki":["266883400"],"issn":["1879-0852"],"zdb":["1468190-0"]},"recId":"266883400","disp":"Robustness of convolutional neural networks in recognition of pigmented skin lesionsEuropean journal of cancer","type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title_sort":"European journal of cancer","title":"European journal of cancer"}],"note":["Gesehen am 21.03.24","Ungezählte Beil.: Supplement"],"origin":[{"publisher":"Elsevier ; Pergamon Press","dateIssuedKey":"1992","dateIssuedDisp":"1992-","publisherPlace":"Amsterdam [u.a.] ; [Erscheinungsort nicht ermittelbar]"}],"pubHistory":["28.1992 -"],"part":{"year":"2021","pages":"81-91","text":"145(2021), Seite 81-91","extent":"11","volume":"145"},"titleAlt":[{"title":"EJC online"}],"language":["eng"],"corporate":[{"role":"isb","display":"European Organization for Research on Treatment of Cancer"},{"display":"European Association for Cancer Research","role":"isb"},{"display":"European School of Oncology","role":"isb"}]}],"physDesc":[{"extent":"11 S."}],"name":{"displayForm":["Roman C. Maron, Sarah Haggenmüller, Christof von Kalle, Jochen S. Utikal, Friedegund Meier, Frank F. Gellrich, Axel Hauschild, Lars E. French, Max Schlaak, Kamran Ghoreschi, Heinz Kutzner, Markus V. Heppt, Sebastian Haferkamp, Wiebke Sondermann, Dirk Schadendorf, Bastian Schilling, Achim Hekler, Eva Krieghoff-Henning, Jakob N. Kather, Stefan Fröhling, Daniel B. Lipka, Titus J. Brinker"]},"id":{"eki":["1755523629"],"doi":["10.1016/j.ejca.2020.11.020"]},"title":[{"title":"Robustness of convolutional neural networks in recognition of pigmented skin lesions","title_sort":"Robustness of convolutional neural networks in recognition of pigmented skin lesions"}],"note":["Gesehen am 21.04.2021"],"origin":[{"dateIssuedDisp":"7 January 2021","dateIssuedKey":"2021"}],"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a MARONROMANROBUSTNESS7202