Use of TanDEM-X and Sentinel products to derive gully activity maps in Kunene Region (Namibia) based on automatic iterative random forest approach

Gullies are landforms with specific patterns of shape, topography, hydrology, vegetation, and soil characteristics. Remote sensing products (TanDEM-X, Sentinel-1, and Sentinel-2) serve as inputs into an iterative algorithm, initialized using a micro-mapping simulation as training data, to map gullie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vallejo Orti, Miguel (VerfasserIn) , Winiwarter, Lukas (VerfasserIn) , Corral-Pazos-de-Provens, Eva (VerfasserIn) , Williams, Jack G. (VerfasserIn) , Bubenzer, Olaf (VerfasserIn) , Höfle, Bernhard (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 24 November 2020
In: IEEE journal of selected topics in applied earth observations and remote sensing
Year: 2020, Jahrgang: 14, Pages: 607-623
ISSN:2151-1535
DOI:10.1109/JSTARS.2020.3040284
Online-Zugang:Verlag: https://ieeexplore.ieee.org/document/9268451
Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1109/JSTARS.2020.3040284
Volltext
Verfasserangaben:Miguel Vallejo Orti, Lukas Winiwarter, Eva Corral-Pazos-de-Provens, Jack G. Williams, Olaf Bubenzer, Bernhard Höfle

MARC

LEADER 00000caa a2200000 c 4500
001 175601499X
003 DE-627
005 20220819183217.0
007 cr uuu---uuuuu
008 210427r20212020xx |||||o 00| ||eng c
024 7 |a 10.1109/JSTARS.2020.3040284  |2 doi 
035 |a (DE-627)175601499X 
035 |a (DE-599)KXP175601499X 
035 |a (OCoLC)1341406201 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Vallejo Orti, Miguel  |d 1983-  |e VerfasserIn  |0 (DE-588)1192770056  |0 (DE-627)167124317X  |4 aut 
245 1 0 |a Use of TanDEM-X and Sentinel products to derive gully activity maps in Kunene Region (Namibia) based on automatic iterative random forest approach  |c Miguel Vallejo Orti, Lukas Winiwarter, Eva Corral-Pazos-de-Provens, Jack G. Williams, Olaf Bubenzer, Bernhard Höfle 
264 1 |c 24 November 2020 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.04.2021 
520 |a Gullies are landforms with specific patterns of shape, topography, hydrology, vegetation, and soil characteristics. Remote sensing products (TanDEM-X, Sentinel-1, and Sentinel-2) serve as inputs into an iterative algorithm, initialized using a micro-mapping simulation as training data, to map gullies in the northwestern of Namibia. A Random Forest Classifier examines pixels with similar characteristics in a pool of unlabeled data, and gully objects are detected where high densities of gully pixels are enclosed by an alpha shape. Gully objects are used in subsequent iterations following a mechanism where the algorithm uses the most reliable pixels as gully training samples. The gully class continuously grows until an optimal scenario in terms of accuracy is achieved. Results are benchmarked with manually tagged gullies (initial gully labeled area <; 0.3% of the total study area) in two different watersheds (408 and 302 km2, respectively) yielding total accuracies of >98%, with 60% in the gully class, Cohen Kappa >0.5, Matthews Correlation Coefficient >0.5, and receiver operating characteristic Area Under the Curve >0.89. Hence, our method outlines gullies keeping low false-positive rates while the classification quality has a good balance for the two classes (gully/no gully). Results show the most significant gully descriptors as the high temporal radar signal coherence (22.4%) and the low temporal variability in Normalized Difference Vegetation Index (21.8%). This research builds on previous studies to face the challenge of identifying and outlining gully-affected areas with a shortage of training data using global datasets, which are then transferable to other large (semi-) arid regions. 
534 |c 2020 
650 4 |a Agriculture 
650 4 |a Arid regions 
650 4 |a automatic classification 
650 4 |a Degradation 
650 4 |a gully erosion 
650 4 |a iterative learning 
650 4 |a land degradation 
650 4 |a Namibia 
650 4 |a random forest (RF) 
650 4 |a Random forests 
650 4 |a Soil 
650 4 |a soil erosion mapping 
650 4 |a Three-dimensional displays 
650 4 |a Training data 
650 4 |a Vegetation mapping 
700 1 |a Winiwarter, Lukas  |d 1994-  |e VerfasserIn  |0 (DE-588)1198882808  |0 (DE-627)1681036118  |4 aut 
700 1 |a Corral-Pazos-de-Provens, Eva  |e VerfasserIn  |4 aut 
700 1 |a Williams, Jack G.  |e VerfasserIn  |0 (DE-588)1227934939  |0 (DE-627)1749137569  |4 aut 
700 1 |a Bubenzer, Olaf  |d 1964-  |e VerfasserIn  |0 (DE-588)173301495  |0 (DE-627)698219147  |0 (DE-576)181476576  |4 aut 
700 1 |a Höfle, Bernhard  |e VerfasserIn  |0 (DE-588)1019895403  |0 (DE-627)691049297  |0 (DE-576)358986753  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE journal of selected topics in applied earth observations and remote sensing  |d New York, NY : IEEE, 2008  |g 14(2021), Seite 607-623  |h Online-Ressource  |w (DE-627)581732634  |w (DE-600)2457423-5  |w (DE-576)287121380  |x 2151-1535  |7 nnas 
773 1 8 |g volume:14  |g year:2021  |g pages:607-623  |g extent:17  |a Use of TanDEM-X and Sentinel products to derive gully activity maps in Kunene Region (Namibia) based on automatic iterative random forest approach 
856 4 0 |u https://ieeexplore.ieee.org/document/9268451  |x Verlag 
856 4 0 |u https://doi.org/10.1109/JSTARS.2020.3040284  |x Resolving-System  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210427 
993 |a Article 
994 |a 2021 
998 |g 1019895403  |a Höfle, Bernhard  |m 1019895403:Höfle, Bernhard  |d 120000  |d 120700  |e 120000PH1019895403  |e 120700PH1019895403  |k 0/120000/  |k 1/120000/120700/  |p 6  |y j 
998 |g 173301495  |a Bubenzer, Olaf  |m 173301495:Bubenzer, Olaf  |d 120000  |d 120700  |e 120000PB173301495  |e 120700PB173301495  |k 0/120000/  |k 1/120000/120700/  |p 5 
998 |g 1227934939  |a Williams, Jack G.  |m 1227934939:Williams, Jack G.  |p 4 
998 |g 1198882808  |a Winiwarter, Lukas  |m 1198882808:Winiwarter, Lukas  |d 120000  |d 120700  |e 120000PW1198882808  |e 120700PW1198882808  |k 0/120000/  |k 1/120000/120700/  |p 2 
998 |g 1192770056  |a Vallejo Orti, Miguel  |m 1192770056:Vallejo Orti, Miguel  |d 120000  |e 120000PV1192770056  |k 0/120000/  |p 1  |x j 
999 |a KXP-PPN175601499X  |e 3918149641 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"175601499X","note":["Gesehen am 27.04.2021"],"name":{"displayForm":["Miguel Vallejo Orti, Lukas Winiwarter, Eva Corral-Pazos-de-Provens, Jack G. Williams, Olaf Bubenzer, Bernhard Höfle"]},"relHost":[{"origin":[{"dateIssuedKey":"2008","publisher":"IEEE","dateIssuedDisp":"2008-","publisherPlace":"New York, NY"}],"id":{"eki":["581732634"],"zdb":["2457423-5"],"issn":["2151-1535"]},"corporate":[{"role":"aut","display":"Institute of Electrical and Electronics Engineers"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"IEEE journal of selected topics in applied earth observations and remote sensing","title":"IEEE journal of selected topics in applied earth observations and remote sensing"}],"part":{"volume":"14","extent":"17","year":"2021","text":"14(2021), Seite 607-623","pages":"607-623"},"disp":"Institute of Electrical and Electronics EngineersIEEE journal of selected topics in applied earth observations and remote sensing","pubHistory":["1.2008 -"],"recId":"581732634","note":["Gesehen am 17.01.25"]}],"person":[{"family":"Vallejo Orti","display":"Vallejo Orti, Miguel","given":"Miguel","role":"aut"},{"role":"aut","display":"Winiwarter, Lukas","family":"Winiwarter","given":"Lukas"},{"given":"Eva","family":"Corral-Pazos-de-Provens","display":"Corral-Pazos-de-Provens, Eva","role":"aut"},{"role":"aut","given":"Jack G.","display":"Williams, Jack G.","family":"Williams"},{"family":"Bubenzer","display":"Bubenzer, Olaf","given":"Olaf","role":"aut"},{"role":"aut","display":"Höfle, Bernhard","family":"Höfle","given":"Bernhard"}],"physDesc":[{"extent":"17 S."}],"title":[{"title":"Use of TanDEM-X and Sentinel products to derive gully activity maps in Kunene Region (Namibia) based on automatic iterative random forest approach","title_sort":"Use of TanDEM-X and Sentinel products to derive gully activity maps in Kunene Region (Namibia) based on automatic iterative random forest approach"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"eki":["175601499X"],"doi":["10.1109/JSTARS.2020.3040284"]},"language":["eng"],"origin":[{"dateIssuedDisp":"24 November 2020","dateIssuedKey":"2021"}]} 
SRT |a VALLEJOORTUSEOFTANDE2420